Critical fluctuations at STAR BES & FXT

Toshihiro Nonaka for the STAR collaboration

University of Tsukuba

3rd workshop on Physics performance studies at FAIR and NICA

Supported in part by

Office of Science

STAR

- Introduction
- Analysis techniques
- C₄/C₂ for critical point search
- C_5/C_1 and C_6/C_2 for crossover search
- Future perspective
- Summary

\checkmark QCD phase structure in wide (μ_B ,T) region.

A. Bzdak et al, Phys. Rep. 853 pp 1-87 (2020)

Beam Energy Scan

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

$\sqrt{s_{NN}} (\text{GeV})$) No. of	events (n	nillion) $T_{\rm ch}$ (MeV) μ	_B (MeV)
200		238	164.3	28
62.4		47	160.3	70
54.4		550	160.0	83
39	2010-	86	156.4	160
27	2017	30	155.0	144
19.6		15	153.9	188
14.5		20	151.6	264
11.5		6.6	149.4	287
7.7		3	144.3	398

- Crossover at $\mu_B = 0$ MeV Y. Aoki et al, Nature 443, 675(2006)
- 1st-order phase transition at large μ_B?
- Critical point?

TPC and TOF are used for fluctuation analysis.

Particle identification

 \checkmark dE/dx measured with TPC is used for particle identification at low p_T region. \checkmark < 2 σ on dE/dx distribution

STAR

Higher-order fluctuations

Moments and cumulants are mathematical measures of "shape" of a distribution which probe the fluctuation of observables.

 \checkmark

STAR

S and **k** are sensitive to non-gaussian fluctuations. \checkmark

Cumulant *⇐* **Central Moment** \checkmark

 $<\delta N>=N-<N>$ $C_1 = M = \langle N \rangle$ $C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$ $C_3 = S\sigma^3 = \langle \delta N \rangle^3 >$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Moments: mean (*M*), standard deviation (σ), skewness (*S*) and kurtosis (κ).

Cumulant : additivity \checkmark

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

$$\Delta N_q = N_q - N_{\overline{q}}, \quad q = B, Q, S$$
 over the second second

$$C_2 = \langle \delta N \rangle^2 >_c \approx \xi^2 \qquad C_5 = \langle \delta N \rangle^5 >_c \approx \xi^6$$

$$C_3 = \langle \delta N \rangle^3 >_c \approx \xi^{4.5} \quad C_6 = \langle \delta N \rangle^6 >_c \approx \xi^1$$

$$C_4 = \langle \delta N \rangle^4 >_c \approx \xi^7$$

$$\begin{split} S\sigma &= \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2} \quad \kappa \sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2} \\ \chi_n^q &= \frac{1}{VT^3} \times C_n^q = \frac{\partial^n p / T^4}{\partial \mu_q^n}, \quad q = B, Q, S _ \end{split}$$

Raw net-proton distribution

✓ Avoid auto-correlation effects : New centrality definition ✓ Detector efficiency correction : Binomial model

X.Luo, J. Xu, B. Mohanty and N. Xu. J. Phys. G40,105104(2013) *M. Kitazawa : PRC.86.024904(2012)*

A. Bzdak and V. Koch : PRC.86.044904(2012), X. Luo : PRC.91.034907(2016) T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912(2017), NIMA906 10-17 (2018), NIMA984(2020)164632

X. Luo, T. Nonaka : PRC.99.044917(2019)

STAR

- ✓ Suppress initial volume fluctuation : Centrality bin width correction

STAR Efficiency correction

STAR Collaboration, PRC.104.024902(2021)

✓ Efficiencies are assumed to follow binomial distributions.

$$B_{p,N}(n) = \frac{N!}{n!(N-n)!}p^n(1-p)^n$$

 \checkmark Multiplicity and p_T dependence are taken into account.

M. Kitazawa : PRC.86.024904(2012) A. Bzdak and V. Koch : PRC.86.044904(2012) X. Luo : PRC.91.034907(2016) T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912(2017) X. Luo, T. Nonaka : PRC.99.044917(2019)

Non-binomial efficiency correction

Efficiency distributions need to be

STAR

STAR Collaboration, PRC.104.024902(2021) STAR Collaboration, PRL.126.092301(2021)

Non-binomial efficiency correction **Unfolding**: Esumi, Nakagawa, Nonaka, NIMA.987.164802(2021) Moment expansion: Nonaka, Kitazawa, Esumi, NIMA906 10-17 (2018)

STAR Non-binomial efficiency correction

- ✓ Efficiency distributions are studied via simulations to check the binomial assumption.
- conventional binomial corrections.

Unfolding: Esumi, Nakagawa, Nonaka, NIMA.987.164802(2021) Moment expansion: Nonaka, Kitazawa, Esumi, NIMA906 10-17 (20 Nonaka, 3rd workshop on Physics performance studies at FAIR and NICA 12

✓ Results of non-binomial efficiency corrections are consistent with those from

STAR Collaboration, PRC.104.024902(2021)

- ✓ Final state multiplicity and initial geometry are not one-to-one corresponding \rightarrow volume fluctuation
- ✓ Higher-order cumulants are artificially enhanced
- \checkmark Data driven approach (CBWC) is applied.
 - X.Luo et al, J. Phys. G40,105104(2013)

Wider centrality bin: larger value of higher-order cumulants

STAR

consistent with each other in BES-I data.

STAR Collaboration, PRC.104.024902(2021)

Data driven approach (CBWC) and model dependent method (VFC) are

Net-charge and net-kaon

STAR

✓ Statistical errors depend on width of the distribution and detector efficiencies.

Large statistical uncertainties, need more data.

star Net-proton

✓ Deviation below Poisson baseline (unity).

✓ Both 3rd- and 4th-order fluctuations have their minima at $\sqrt{s_{NN}} = 19.6$ GeV.

PRL112, 032302(2014): STAR Collaboration

STAR Collaboration, **PRL**.126.092301(2021)

STAR Net-proton C₄/C₂ with extended p_T coverage

- **√**Net-proton $\kappa\sigma^2$ (C₄/C₂) shows a non-monotonic behaviour. The trend is consistent with the expectation from theoretical calculations

 \checkmark Polynomial fits are done varying the data point within uncertainties.

STAR

 \checkmark Check the probability that at least one point of derivatives at 8 energies has different sign from others $\rightarrow 3.1\sigma$ significance of non-monotonicity for $\kappa\sigma^2$

STAR Collaboration, PRL.126.092301(2021)

STAR C6/C2 for crossover search

 \checkmark There isn't yet any direct experimental evidence for the smooth crossover at $\mu_{\rm B} \sim 0$. $\sqrt{C_6/C_2} < 0$ is predicted as a signature of crossover transition. \checkmark High-statistics data sets at $\sqrt{s_{NN}} = 27$, 54.4, and 200 GeV are analyzed to look for the experimental signature of crossover transition.

C.Schmidt, Prog. Theor. Phys. Suppl. 186, 563–566 (2010) Cheng et al, Phys. Rev. D 79, 074505 (2009) Friman et al, Eur. Phys. J. C (2011) 71:1694 χ_6^Q/χ_2^Q χ_4^Q/χ_2^Q $\chi_4^{\rm B}/\chi_2^{\rm B}$ $\chi_6^{\rm B}/\chi_2^{\rm B}$ Freeze-out conditions HRG ~ 2 ~ 10 QCD: $T^{\rm freeze}/T_{pc} \lesssim 0.9$ $\gtrsim 1$ $\gtrsim 1$ ~ 10 ~ 2 QCD: $T^{\text{freeze}}/T_{pc} \simeq 1$ ~ 0.5 $<\!0$ $<\!0$ ~ 1 Predicted scenario for this measurement 1.2

STAR, arXiv:2105.14698 (accepted by PRL)

- \checkmark C₆/C₂ values are progressively negative from peripheral to central collisions at 200 GeV, which is consistent with LQCD calculations.
- ✓ Could suggest a smooth crossover transition at top RHIC energy.

STAR Energy dependence of C_5/C_1 and C_6/C_2

- Weak collision energy \checkmark dependence observed for 0-40%
 - Deviations from zero at a level of

System size dependence STAR

not the case in 200 GeV p+p collisions.

- Only statistical errors are shown for Au+Au results
- Efficiency is not corrected for x-axis

STAR Collaboration, PRC.104.024902(2021) LQCD : Phys. Rev. D 101, 074502 (2020)

 \checkmark C₅/C₁ and C₆/C₂ are positive for p+p collisions, while negative for central Au+Au collisions. ✓ Lattice calculations imply chiral phase transition in the thermalized QCD matter, which is

STAR Collaboration, Nuclear Physics A, 1005, 121882 (2021)

- \checkmark ~18 times event statistics in Au+Au collisions at 200 GeV for 2023-2025. \checkmark More definitive signature of smooth crossover at μ_{B} ~20 MeV.

SN0773, "The STAR Beam Use Request for Run-22 and data taking in 2023-2025"

Future perspective

STAR

Collision Energy √s_{NN} (GeV) **STAR Collaboration, PRL.126.092301(2021)** HADES Collaboration, PRC.102.024914(2020)

BESII 7.7 < $\sqrt{s_{NN}}$ GeV < 19.6:

10-20 times larger statistics than BES-I have been successfully collected.

HADES $\sqrt{s_{NN}} = 2.4$ GeV:

Consistent with zero, drop from STAR 7.7 GeV. HADES, Phys.Rev.C 102 (2020) 2, 024914

FXT 3.0 < $\sqrt{s_{NN}}$ **GeV** < 13.7:

Bridging the gap between BES-II and HADES

Future perspective

STAR

Collision Energy √s_{NN} (GeV) **STAR Collaboration, PRL.126.092301(2021)** HADES Collaboration, PRC.102.024914(2020)

10-20 times larger statistics than BES-I have been successfully collected.

√s _{NN} (GeV)	Beam Energy (GeV/nucleon)	Collider or Fixed Target	Ycenter of mass	µ _В (MeV)	Run Time (days)	No. Events Collected (Request)	Date Collected
200	100	С	0	25	2.0	138 M (140 M)	Run-19
27	13.5	С	0	156	24	555 M (700 M)	Run-18
19.6	9.8	С	0	206	36	582 M (400 M)	Run-19
17.3	8.65	С	0	230	14	256 M (250 M)	Run-21
14.6	7.3	С	0	262	60	324 M (310 M)	Run-19
13.7	100	FXT	2.69	276	0.5	52 M (50 M)	Run-21
11.5	5.75	С	0	316	54	235 M (230 M)	Run-20
11.5	70	FXT	2.51	316	0.5	50 M (50 M)	Run-21
9.2	4.59	С	0	372	102	162 M (160 M)	Run-20+20b
9.2	44.5	FXT	2.28	372	0.5	50 M (50 M)	Run-21
7.7	3.85	С	0	420	90	100 M (100 M)	Run-21
7.7	31.2	FXT	2.10	420	0.5+1.0+ scattered	50 M + 112 M + 100 M (100 M)	Run-19+20+21
7.2	26.5	FXT	2.02	443	2+Parasitic with CEC	155 M + 317 M	Run-18+20
6.2	19.5	FXT	1.87	487	1.4	118 M (100 M)	Run-20
5.2	13.5	FXT	1.68	541	1.0	103 M (100 M)	Run-20
4.5	9.8	FXT	1.52	589	0.9	108 M (100 M)	Run-20
3.9	7.3	FXT	1.37	633	1.1	117 M (100 M)	Run-20
3.5	5.75	FXT	1.25	666	0.9	116 M (100 M)	Run-20
3.2	4.59	FXT	1.13	699	2.0	200 M (200 M)	Run-19
3.0	3.85	FXT	1.05	721	4.6	259 M -> 2B(100 M -> 2B)	Run-18+21

Analysis window:				
$0.4 < p_T < 2.0 \text{ GeV/c}, -0.5 < y$				
Proton identification:				
TPC	when $p < 2.0 \text{ GeV/c}$			
TPC+TOF	when $p > 2.0 \text{ GeV/c}$			

enhance the value of cumulants.

Y. Zhang, APS April meeting 2021

\checkmark Visible tail in multiplicity distribution due to pileup events, which is known to

T. Nonaka, M. Kitazawa, S. Esumi, NIMA.984.164632(2020)

Pileup correction STAR

 \checkmark Data-driven approach of the pileup correction is available once true and pileup multiplicity distributions are determined by simulations. ✓ Necessary information: True multiplicity distribution from single-collision

T. Nonaka, M. Kitazawa, S. Esumi, NIMA.984.164632(2020) Yu Zhang et al., arXiv: 2108.10134

- observed in BES-I: *Critical point at* $\sqrt{s_{NN}} <= 7.7 GeV?$
- **Crossover** at µ_B~20MeV?
- (3.0-19.6 GeV) to have more definitive messages.

 \checkmark Non-monotonic beam energy dependence of net-p C₄/C₂ has been

 \checkmark Negative value of net-p C₆/C₂ at $\sqrt{s_{NN}} = 200$ GeV central collisions:

Stay tuned for precise measurement from BES-II and FXT energies

Thank you for your attention

Back up