Studying the QCD Phase Structure through **Higher Moments at RHIC-BES at STAR**

Toshihiro Nonaka University of Tsukuba For the STAR collaboration

ICNFP2021@Crete, Greece (Zoom)

Supported in part by

- Introduction
- · C₄/C₂ for critical point search
- C_5/C_1 and C_6/C_2 for crossover search
- BES-II and fixed-target programs
- Experimental challenges
- Summary

\checkmark QCD phase structure in wide (μ_B ,T) region.

A. Bzdak et al, Phys. Rep. 853 pp 1-87 (2020)

Star Beam Energy Scan

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

- Crossover at $\mu_B = 0$ MeV Y. Aoki et al, Nature 443, 675(2006)
- 1st-order phase transition at large μ_B?
- **Critical point?**

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

$\sqrt{s_{NN}} (\text{GeV})$) No. of	events (n	nillion) $T_{ m ch}$ (MeV) μ	в (MeV)
200		238	164.3	28
62.4		47	160.3	70
54.4		550	160.0	83
39	2010-	86	156.4	160
27	2017	30	155.0	144
19.6		15	153.9	188
14.5		20	151.6	264
11.5		6.6	149.4	287
7.7		3	144.3	398

- Crossover at $\mu_B = 0$ MeV Y. Aoki et al, Nature 443, 675(2006)
- 1st-order phase transition at large μ_B?
- Critical point?

Higher-order fluctuations

Moments and cumulants are mathematical measures of "shape" of a distribution which probe the fluctuation of observables.

 \checkmark

STAR

S and **k** are sensitive to non-gaussian fluctuations. \checkmark

Cumulant *⇐* **Central Moment** \checkmark

 $<\delta N>=N-<N>$ $C_1 = M = \langle N \rangle$ $C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$ $C_3 = S\sigma^3 = \langle \delta N \rangle^3 >$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Moments: mean (*M*), standard deviation (σ), skewness (*S*) and kurtosis (κ).

Cumulant : additivity \checkmark

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

$$\Delta N_q = N_q - N_{\overline{q}}, \quad q = B, Q, S$$
 over
 No. of positively charged particles in one collision No. of negatively charged particles in one collision

$$C_2 = \langle \delta N \rangle^2 >_c \approx \xi^2 \qquad C_5 = \langle \delta N \rangle^5 >_c \approx \xi^6$$

$$C_3 = \langle \delta N \rangle^3 >_c \approx \xi^{4.5} \quad C_6 = \langle \delta N \rangle^6 >_c \approx \xi^1$$

$$C_4 = \langle \delta N \rangle^4 >_c \approx \xi^7$$

$$S\sigma = \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2} \quad \kappa \sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2}$$
$$\chi_n^q = \frac{1}{VT^3} \times C_n^q = \frac{\partial^n p / T^4}{\partial \mu_q^n}, \quad q = B, Q, S$$

 \checkmark The combined PID with m² from TOF is used at high p_T region.

 \checkmark dE/dx measured with TPC is used for proton identification at low p_T region.

STAR Raw net-proton distribution

✓ Avoid auto-correlation effects : New centrality definition ✓ Detector efficiency correction : Binomial model

X.Luo, J. Xu, B. Mohanty and N. Xu. J. Phys. G40,105104(2013) *M. Kitazawa : PRC.86.024904(2012)*

A. Bzdak and V. Koch : PRC.86.044904(2012), X. Luo : PRC.91.034907(2016) T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912(2017), NIMA906 10-17 (2018), NIMA984(2020)164632

X. Luo, T. Nonaka : PRC.99.044917(2019)

- ✓ Suppress initial volume fluctuation : Centrality bin width correction

STAR Collaboration, PRC.104.024902(2021)

- Detector efficiencies are studied in \checkmark embedding simulations.
- Efficiencies are assumed to follow \checkmark binomial distributions.
- Multiplicity and p_T dependence are \checkmark taken into account.
 - *M. Kitazawa : PRC.86.024904(2012)* A. Bzdak and V. Koch : PRC.86.044904(2012) X. Luo : PRC.91.034907(2016) T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912(2017) X. Luo, T. Nonaka : PRC.99.044917(2019)

STAR Collaboration, PRC.104.024902(2021)

- ✓ Final state multiplicity and initial geometry are not one-to-one corresponding \rightarrow volume fluctuation
- Data driven approach (CBWC) is \checkmark applied.

11

C₄/C₂ for critical point search STAR **STAR Collaboration**, *PRL*.126.092301(2021) 4.0 STAR Data • 0 - 5% 3.0 70 - 80% Stat. uncertainty Syst. uncertainty 2.0 Projected BES-II Stat. uncertainty **UrQMD 0-5%** STAR 1.0 **Au+Au Collisions at RHIC** Net-proton 0.0 $|y| < 0.5, 0.4 < p_{T} < 2.0 (GeV/c)$ 50 100 200 20 10 5 Collision Energy √s_{NN} (GeV)

- **√** Net-proton $\kappa\sigma^2$ (C₄/C₂) shows a non-monotonic behaviour. The trend is consistent with the expectation from theoretical calculations having a critical point.
- ✓ Enhancement at low beam energies cannot be explained by baryon number conservation.

Non-monotonicity STAR

- \checkmark Polynomial fits are done varying the data point within uncertainties.
- \checkmark Check the probability that at least one point of derivatives at 8 energies has different sign from others $\rightarrow 3.1\sigma$ significance of non-monotonicity for $\kappa\sigma^2$

STAR Collaboration, PRL.126.092301(2021)

Star Net-charge and net-kaon

 $error(\kappa\sigma^2) \propto \frac{\sigma^2}{\varepsilon^2} \frac{1}{\sqrt{N_{evts}}}$

Large statistical uncertainties, need more data.

STAR C6/C2 for crossover search

 \checkmark There isn't yet any direct experimental evidence for the smooth crossover at $\mu_{\rm B} \sim 0$. $\sqrt{C_6/C_2} < 0$ is predicted as a signature of crossover transition. \checkmark High-statistics data sets at $\sqrt{s_{NN}} = 27$, 54.4, and 200 GeV are analyzed to look for the experimental signature of crossover transition.

C.Schmidt, Prog. Theor. Phys. Suppl. 186, 563–566 (2010) Cheng et al, Phys. Rev. D 79, 074505 (2009) Friman et al, Eur. Phys. J. C (2011) 71:1694

· · · · · · · · · · · · · · · · · · ·	Freeze-out conditions	$\chi_4^{\rm B}/\chi_2^{\rm B}$	$\chi_6^{\rm B}/\chi_2^{\rm B}$	χ_4^Q/χ_2^Q	χ_6^Q/χ_2^Q
	HRG	1	1	~ 2	~10
	QCD: $T^{\text{freeze}}/T_{pc} \lesssim 0.9$	$\gtrsim 1$	$\gtrsim 1$	~ 2	~10
-	QCD: $T^{\text{freeze}}/T_{pc} \simeq 1$	~0.5	<0	~1	<0
1.2	Predicted so	cenario f	or this n	neasurer	nent

STAR, arXiv:2105.14698

- \checkmark C₆/C₂ values are progressively negative from peripheral to central collisions at 200 GeV, which is consistent with LQCD calculations.
- ✓ Could suggest a smooth crossover transition at top RHIC energy.

STAR Energy dependence of C_5/C_1 and C_6/C_2

- Weak collision energy \checkmark

Multiplicity dependence

not the case in 200 GeV p+p collisions.

STAR

- Only statistical errors are shown for Au+Au results
- **Efficiency is not corrected for x-axis**

STAR Collaboration, PRC.104.024902(2021) LQCD : Phys. Rev. D 101, 074502 (2020)

 \checkmark C₅/C₁ and C₆/C₂ are positive for p+p collisions, while negative for central Au+Au collisions. ✓ Lattice calculations imply chiral phase transition in the thermalized QCD matter, which is

STAR Collaboration, Nuclear Physics A, 1005, 121882 (2021)

T. Nonaka, ICNFP2021@Crete,Greece (Zoom)

18

STAR Collaboration, PRL.126.092301(2021)

10-20 times larger statistics than BES-I have been successfully collected.

s _{NN} (GeV)	Beam Energy (GeV/nucleon)	Collider or Fixed Target	Ycenter of mass	µ _в (MeV)	Run Time (days)	No. Events Collected (Request)	Date Collected
200	100	С	0	25	2.0	138 M (140 M)	Run-19
27	13.5	С	0	156	24	555 M (700 M)	Run-18
19.6	9.8	С	0	206	36	582 M (400 M)	Run-19
17.3	8.65	С	0	230	14	256 M (250 M)	Run-21
14.6	7.3	С	0	262	60	324 M (310 M)	Run-19
13.7	100	FXT	2.69	276	0.5	52 M (50 M)	Run-21
11.5	5.75	С	0	316	54	235 M (230 M)	Run-20
11.5	70	FXT	2.51	316	0.5	50 M (50 M)	Run-21
9.2	4.59	С	0	372	102	162 M (160 M)	Run-20+20t
9.2	44.5	FXT	2.28	372	0.5	50 M (50 M)	Run-21
7.7	3.85	С	0	420	90	100 M (100 M)	Run-21
7.7	31.2	FXT	2.10	420	0.5+1.0+ scattered	50 M + 112 M + 100 M (100 M)	Run-19+20+2
7.2	26.5	FXT	2.02	443	2+Parasitic with CEC	155 M + 317 M	Run-18+20
6.2	19.5	FXT	1.87	487	1.4	118 M (100 M)	Run-20
5.2	13.5	FXT	1.68	541	1.0	103 M (100 M)	Run-20
4.5	9.8	FXT	1.52	589	0.9	108 M (100 M)	Run-20
3.9	7.3	FXT	1.37	633	1.1	117 M (100 M)	Run-20
3.5	5.75	FXT	1.25	666	0.9	116 M (100 M)	Run-20
3.2	4.59	FXT	1.13	699	2.0	200 M (200 M)	Run-19
3.0	3.85	FXT	1.05	721	4.6	259 M -> 2B(100 M -> 2B)	Run-18+21

STAR Fixed-target program (FXT)

- \checkmark µ_B region has been extended up to 720 MeV.
- ✓ Huge datasets were collected in FXT at 9 beam energies from 3 GeV to 7.7 GeV to confirm the peak structure of $\kappa\sigma^2$.
- P. Garg et al., Phys. Rev. C 96 044908 (2017), S. Sombun et al., J. Phys. G45 025101 (2018)

STAR FXT: pileup correction

multiplicity distributions are determined by simulations.

T. Nonaka, M. Kitazawa, S. Esumi, NIMA.984.164632(2020)

✓ Data-driven approach of the pileup correction is available once true and pileup

Challenges : Non-binomial efficiency correction

detector efficiencies deviate from binomial distribution.

STAR

✓ Detector response functions need to be carefully studied via simulations.

STAR Collaboration, PRC.104.024902(2021)

<u>Unfolding</u>: Esumi, Nakagawa, Nonaka, NIMA.987.164802(2021) Moment expansion: Nonaka, Kitazawa, Esumi, NIMA906 10-17 (2018)

Conventional correction method cannot be applied if response functions of

STAR

- with each other in BES-I data.
- carefully checked among different ways of centrality determination.

STAR Collaboration, PRC.104.024902(2021)

✓ Data driven approach (CBWC) and model dependent method (VFC) are consistent

 \checkmark Due to less centrality resolution in lower collision energies, results will need to be

		23	
per	N١	v	

- ✓ Non-monotonic beam energy dependence of C₄/C₂ has been observed in BES-I. Stay tuned for precise measurement from BES-II and FXT energies (3.3-19.6 GeV) to have more definitive messages.
- ✓ Negative value of C₆/C₂ at √s_{NN} = 200 GeV central collisions could suggest a smooth crossover transition at RHIC top energy. This is not the case for p+p 200 GeV high multiplicity events.
- ✓ FXT 3 GeV analysis is ongoing. Pileup effects can be corrected.
- ✓ Detector efficiencies and volume fluctuations need to be carefully studied for each experiment.

Thank you for your attention

Back up

STAR Acceptance dependence

STAR, arXiv:2105.14698

 \checkmark C₆/C₂ values are negative for 200 GeV 30-40% centrality.

Statistical uncertainties

- ✓ Larger statistical uncertainties in central than peripheral collisions
 - Broader distributions in central collisions (large σ^2)
- \checkmark 100 times larger errors for C₆ than C₄!

• Lower detector efficiencies in central collisions due to high-multiplicity.

