Measurement of Sixth-Order Cumulant of the Net-Proton Multiplicity Distributions in Au+Au Collisions at \sqrt{s_{NN}} = 54.4 and 200 GeV at the STAR Experiment

Toshihiro Nonaka, for the STAR Collaboration

Central China Normal University

Lattice QCD calculation predicts the phase transition at small μ_B is the smooth crossover. Experimentally, however, there is still no direct evidence for the phase transition. It is predicted by Polyakov loop extended (PQM) model that the sixth-order cumulant ratio (C_6/C_2) of net-baryon distribution becomes negative if freeze-out is close to the crossover phase transition. In this poster, acceptance and centrality is endence of C₆/C₂ of net-proton multiplicity distributions are presented for Au+Au collisions at Vs_{NN} = 54.4 and 200 GeV. Those results are compar (Sith the hadron transport model) and lattice QCD calculations.

1.2

Motivation

Smooth crossover at small $\mu_{\rm B}$ predicted by Lattice QCD

K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74, 014001(2011)

Quark-Gluon Plasma

Analysis techniques

Proton identification

Results at 200 GeV are compared with LQCD baryon number susceptibility ratio, $\chi^{6}_{B}/\chi^{2}_{B}$, at T = 160 MeV μ_{B} = 0 MeV. Two caveats should be kept in mind :

- $\mu_{\rm B}$ ~20 MeV at 200 GeV.
- Acceptance is not considered in LQCD calculations.

X. Luo and N. Xu : Nucl. Sci. Tech. 28, 112 (2017)

 Use charged particles except protons in order to avoid the autocorrelation.

Centrality bin width correction

Calculate cumulants at each multiplicity bin and average them in one centrality, which leads to the suppression of the volume fluctuation. **Efficiency correction**

Formulas applied assuming efficiencies follow binomial distribution.

A. Bazavov et al, Phys. Rev. D 054504(2017)

S. Borsanyi, et al, JHEP 1810 205 054504(2018)

Results

- Rapidity and p_T acceptance window dependence of C_6/C_2 at v_{NN} = 200 GeV for each centrality bin.
- > Results show linear decrease with increasing the acceptance.
- \succ The C₆/C₂ becomes negative in central collisions with wide acceptance.

- Efficient formulas : T. Nonaka et al, Phys. Rev. C. 95.064912
- Track-by-track correction: X. Luo and T. Nonaka , Phys. Rev. C. 99, 044917 (2019)

Statistical errors : Bootstrap

- \succ Centrality dependence of C₆/C₂ at $\sqrt{s_{NN}}$ = 54.4 and 200 GeV.
- \succ The C₆/C₂ values for both the energies are consistent with each other in peripheral collisions, while $C_6/C_2 > 0$ at 54.4 GeV and $C_6/C_2 < 0$ at 200 GeV in central collisions.
- \succ UrQMD shows C₆/C₂>0 for all centralities.
- Results in 0-40% central collisions at 200 GeV are consistent with LQCD calculations within large uncertainties.

Summary

For the first time, we present high statistics results of centrality, p_T and rapidity dependence of C_6/C_2 of net-proton multiplicity distributions from $Vs_{NN} = 54.4$ and 200 GeV in Au+Au collisions. Results show $C_6/C_2 > 0$ and <0 at 54.4 and 200 GeV central collisions, respectively. This is qualitatively consistent with the PQM model prediction while UrQMD shows $C_6/C_2 > 0$ for all collision centralities. LQCD calculations are consistent with the data from 0-40% central Au+Au collisions at 200 GeV at RHIC.

In part supported by

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations Toshihiro Nonaka : tnonaka@rcf.rhic.bnl.gov

