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✓ Introduction
• Beam Energy Scan
• The STAR detector

✓ Experimental results
• Freeze-out conditions
• The 1st-order phase transition
• Critical point

- Higher-order fluctuations
- Light nuclei production

• Crossover
✓ BES-II
✓ Summary
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QCD phase diagram
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- Crossover at μB = 0 MeV
Y. Aoki et al, Nature 443, 675(2006)

- 1st-order phase transition at large 
μB?

- Critical point?

✓ Need to investigate the QCD phase structure in wide (μB,T) region.

A. Bzdak et al, 1906.00936
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Beam Energy Scan
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✓ Large data sets in various collision energies.
✓ Large and homogeneous acceptance, especially important for fluctuation analysis.
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The STAR detector
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MTDMagnet BEMCEEMC EPDTOF iTPCTPC

HFT

STAR: 
Has been a great experiment  
Needs upgrades for the future
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Particle identification
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✓ dE/dx measured with TPC is used for proton identification at low pT region.
✓ The combined PID with m2 from TOF is used at high pT region.
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Hadron spectra
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✓ Particle spectra is measured in BES-I.

PRC96, 44904(2017), 1906.03732 : STAR Collaboration
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Freeze-out conditions
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✓ Chemical freeze-out
- Weak temperature dependence
- Centrality dependence of μB

✓ Kinetic freeze-out
- Central collisions→lower value of Tkin 

and larger collectivity <β>
- Stronger collectivity at higher energy, 

even for peripheral collisions.

PRC96, 44904(2017) : STAR Collaboration
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Freeze-out conditions
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✓ Both the larger separation of the 
freeze-out temperature (Tch-Tkin) and 
stronger collectivity imply a longer 
hadronic interactions at higher 
collision energies.

PRC96, 44904(2017) : STAR Collaboration
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v1 versus collision energy
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v1 slope versus collision energy
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STAR: PRL112, 162301(2014)
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✓ Minimum at √sNN = 14.5 GeV for net-proton 
and  net-Λ, but net-kaon v1 slope continue 
decreasing as energy decreases.

✓ At low energy, or in the region where the 
net-baryon density is large, repulsive force 
is expected, v1 slope is large and positive.

✓ Softest point only for baryons?

✓ Need model to explain

M. Isse, A. Ohnishi et al, PRC72, 064908(05)
Y. Nara, A. Ohnishi, H. Stoecker, PRC94, 034906(16)
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Higher-order fluctuations
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✓ Moments: mean (M), standard deviation (σ), skewness (S) and kurtosis (κ).
✓ S and κ are non-gaussian fluctuations.

κ > 0

κ < 0

skewness→asymmetry kurtosis→sharpness

from wikipedia

✓ Cumulant ⇄ Moment ✓ Cumulant : additivity

proportional to volume

✦ Moments and cumulants are mathematical measures of “shape” of a distribution 
which probe the fluctuation of observables.
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Fluctuations of conserved quantities
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(1) Sensitive to correlation length

(2) Direct comparison with susceptibilities.
M. Cheng et al, PRD 79, 074505 (2009)

C5 =< (�N)5 >c⇡ ⇠9.5

C6 =< (�N)6 >c⇡ ⇠12 →neutrons cannot be measured

✦ Net baryon, net charge and net strangeness

No. of positively charged 
particles in one collision

No. of negatively charged 
particles in one collision

“Net” : positive - negative Fill in histograms 
over many collisions

PRL 112, 032302 (2014) : 
STAR Collaboration

M. Cheng et al, PRD 79, 074505 (2009)

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009) 
M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011) 
M ︎Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009) 
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Data analysis method
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- X.Luo, J. Xu, B. Mohanty and N. Xu. J. Phys. G40,105104(2013) 
- M. Kitazawa : PRC.86.024904, M. Kitazawa and M. Asakawa : PRC.86.024904 
- A. Bzdak and V. Koch : PRC.86.044904, PRC.91.027901, X. Luo : PRC.91.034907 
- T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912 
- X. Luo, T. Nonaka : PRC.99.044917

✓ Statistical error estimation : Delta theorem or bootstrap
✓ Avoid auto-correlation effects : New centrality definition
✓ Suppress initial volume fluctuation : Centrality bin width correction
✓ Detector efficiency correction  : Binomial model
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First measurement of net proton
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✓ At μB < 210 MeV, the 4th-order fluctuation is found to be flat 
as a function of collision energy.

PRL105, 022302(2010): STAR Collaboration
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Net proton from BES-I
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PRL112, 032302(2014): STAR Collaboration

✓ Deviation below Poisson baseline 
(unity).

✓ Both 3rd- and 4th-order fluctuations 
have their minima at √sNN = 19.6 GeV.
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Net charge and net kaon
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✓ Large statistical 
uncertainties, need 
more data.

error(κσ 2 )∝σ 2

ε 2
1
Nevts

PRL113, 092301(2014): STAR PLB, 785, 551(2018): STAR
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Extend pT coverage
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✓ pT region can be extended up to 2.0 GeV by using TOF as well as TPC.
✓ (Anti)proton statistics is doubled with respect to the published results.

1− 0.5− 0 0.5 10

1

2

3

1

10

210

310

41014.5GeV

TPC

TPC+TOF

|<1η|

Proton Rapidity

 (G
eV

/c
)

Tp 0 20 40 60 80

0.4

0.6

0.8

1 (a) 7.7 GeV

0 20 40 60 80

0.4

0.6

0.8

1  (b) 11.5 GeV

0 20 40 60 80

0.4

0.6

0.8

1 (c) 14.5 GeV

Au+Au Collisions
STAR Preliminary

0 20 40 60 80

0.4

0.6

0.8

1 (d) 19.6 GeV

<0.8 (GeV/c)
T

0.4<p

<2.0 (GeV/c)
T

0.8<p

p p|y|<0.5

0 20 40 60 80

0.4

0.6

0.8

1 (d) 27 GeV

0 20 40 60 80

0.4

0.6

0.8

1 (e) 39 GeV

0 20 40 60 80

0.4

0.6

0.8

1 (f) 62 GeV

0 20 40 60 80

0.4

0.6

0.8

1 (g) 200 GeV E
ffi

ci
en

ci
es

p
p 

an
d 

Fraction of Collision Centralities (%)



Toshihiro Nonaka, XQCD2019, Tokyo, Japan

Cumulants in BES-I energies

�19STAR, PoS CPOD2014 (2015)019
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Non-monotonic behavior
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σ model, M.A. Stephanov, 
PRL107, 052301 (2011)

✓ κσ2 (C4/C2) shows a non-monotonic 
behaviour. The trend is consistent 
with the theoretical calculation.

✓Measurement at lower energies are 
important.

!"�
�

�

STAR, PoS CPOD2014 (2015)019



Toshihiro Nonaka, XQCD2019, Tokyo, Japan

New data set : 54.4 GeV

�21



Toshihiro Nonaka, XQCD2019, Tokyo, Japan

New data sets : 54.4 GeV
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STAR, PoS CPOD2014 (2015)019

✓ Results at 54.4 GeV follow the 
trend very well.
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Non-critical contributions
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1

UrQMD Au+Au 5% most central Net-Proton
AMPT string melting <2.0 GeV/c

T
0.4<p |y|<0.5

2 σκ

/GeVNNS

Z. Feckova, et al., PRC92, 064908(2015). J. Xu, et. al., PRC94, 024901(2016).X. Luo et al., NPA931, 
808(14),P.K. Netrakanti et al. 1405.4617, NPA947, 248(2016),P. Garg et al. PLB 726, 691(2013).S.He,
et. al., PLB762, 296 (2016).S. He, X. Luo, PLB 774, 623 (2017).

✓At √sNN<10 GeV, data shows κσ2>1, while model shows κσ2<1
✓No model simulations can explain the enhancement at low beam 

energies.
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C.Schmidt,Prog.Theor.Phys.Suppl.186,563–566(2010) 
Cheng et al, Phys. Rev. D 79, 074505 (2009) 
Friman et al, Eur. Phys. J. C (2011) 71:1694 

✓ There isn’t yet any experimental evidence for the smooth crossover at μB~0 MeV.
✓ Sixth-order cumulants of net-charge and net-baryon distributions are predicted to 

be negative if the chemical freeze-out is close enough to the phase transition, 
which is the characteristic signal for √sNN>60 GeV.

Sixth-order cumulants

Predicted scenario for this measurement

Friman et al, Eur. Phys. J. C (2011) 
71:1694  : PQM model

A. Bazavov et al, PhysRevD.
95.054504 : LQCD

negative sign

Positive sign is predicted in √sNN<60 GeV

https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.95.054504
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Net-proton at √sNN = 200 GeV
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✓ Much better precision as compared to net-charge.
✓ Negative values are observed systematically from midcentral to central 

collisions, which seems consistent with the theoretical prediction.

Used statistics

error(Cr) / �r
p
Neve
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Net-Proton, |y|<0.5, 
0.4<pT<2.0 GeV/c 0-10%
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Lower beam energy?
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Friman et al, Eur. Phys. J. C (2011) 71:1694 

✓ Positive C6 is predicted in √sNN<60 GeV (μB/T<0.5).
✓ STAR collected ~550M events at √sNN = 54.4 GeV in 2017.
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Net-proton C6/C2 at √sNN = 54.4 GeV
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✓ Positive values are observed systematically from peripheral to central collisions.
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0-40% centrality
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✓ Clear separation and opposite signs between two energies in 0-40%.
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UrQMD
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✓ Clear separation and opposite signs between two energies in 0-40%.
✓ UrQMD result shows positive signs for all centralities at √sNN = 200 GeV.
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Acceptance dependence
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✓ Monotonic decrease with enlarging the acceptance.
✓ pT dependence seems to be saturated at 0.4<pT<1.7 GeV/c.

STAR Preliminary STAR Preliminary
√sNN = 200 GeV
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0-40% centrality
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✓ Results from the central bin of 200 GeV Au+Au collisions are consistent 
with the LQCD prediction → remittance of chiral phase transition?
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LQCD : A. Bazavov et al, 
PhysRevD.95.054504  

https://doi.org/10.1103/PhysRevD.95.054504
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Light nuclei production
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K. J. Sun�L. W. Chen, C. M. Ko, Z. Xu, Phys. Lett. B774, 103 (2017).
K. J. Sun�L. W. Chen, C. M. Ko, J. Pu, Z. Xu, Phys. Lett. B781, 499 (2018).
Edward Shuryak and Juan M. Torres-Rincon, arXiv:1805.04444

Coalescence + nucleon density fluctuation

Neutron density fluctuation

✓Baryon density fluctuation becomes large near the critical point 
or 1st-order phase transition
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Light nuclei production
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✓ Deuteron and triton yields 
have been measured in 
BES-I energies.
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Neutron density fluctuation
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✓ Non-monotonic energy dependence is observed in Au+Au collisions with a 
peak around 20-30 GeV.
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Beam Energy Scan Phase II
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✓BES-II has started this year.

✓ Luminosity has been improved 
with the electron cooling system.

✓ Inner TPC has been fully 
integrated, which extends the 
pseudorapidity coverage from 1.0 
to 1.5

✓New centrality definition by EPD.

✓ eTOF for fixed-target program

✓Higher-order fluctuation 
measurement with small errors 
and large acceptance.
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Beam Energy Scan Phase II
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STAR NPA 00(2016)

✓BES-II has started this year.

✓ Luminosity has been improved 
with the electron cooling system.

✓ Inner TPC has been fully 
integrated, which extends the 
pseudorapidity coverage from 1.0 
to 1.5

✓New centrality definition by EPD.

✓ eTOF for fixed-target program

✓Higher-order fluctuation 
measurement with small errors 
and large acceptance.
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Critical point search in BES-II
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✓ Statistical uncertainties will be 

dramatically reduced.

✓ Can we measure a possible 
“peak” structure?
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Summary
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• Freeze-out conditions have been determined in terms of chemical/kinetic 
freeze-out in various collision energies.

• Search for the softest point as a signal from the 1st-order phase transition, by 
measuring v1 slope in various collision energies.

• Non-monotonic behavior has been observed for net-proton κσ2 in the central 
Au+Au collisions as a function of collision energy, which is qualitatively similar 
to the theoretical prediction.

• Non-monotonic energy dependence is observed for neutron density 
fluctuation in central Au+Au collisions.

• BES-II will shrink the statistical uncertainties at 7.7—19.6 GeV region.



Thank you for your attention
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Back up
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Efficiency
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✓ Single-particle tracking efficiencies for π/K/p have been estimated by 
embedding simulation.

✓ TOF matching efficiency is obtained from the real data.

Multiplicity
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Statistical errors
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Efficiency
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m ✓ Error estimation using a 
simple toy model with 
Skellam distributions.

✓ One order of cumulant 
increases, statistical errors 
becomes x10. (C4→ C6 : 
x100 err)

✓ C6 measurement is more 
challenging than C4.
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✓ The detector efficiency may not be binomial, 
which would be due to the particle mis-
identification, track splitting/merging effects, and 
many other reasons.

✓ Residual dependence of efficiency inside one multiplicity bin (for centrality) 
needs to be taken into account.

A. Bzdak, R. Holzmann, V. 
Koch : PRC.94.064907

A. Bzdak, R. Holzmann, V. Koch : PRC.94.064907

1. Experimental effects

√sNN = 200 GeV

"0lowp = �0.00032

"0lowpbar = �0.00033

"0highp = �0.00025

"0highpbar = �0.00023

STAR Preliminary

T. Nonaka, WPCF2017 Multiplicity

2. Multiplicity dependent efficiency

➡ One example of non-
binomial distribution, 
Beta-binomial, is wider 
distribution than binomial

Non-binomial efficiencies
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Unfolding
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✓ We performed MC simulations by 
embedding protons and antiprotons, 
e.g., Np=60 and Npbar=15 (which would 
be an extreme number), and see 
whether those particles can be 
reconstructed or not.

✓ The response matrix is close to the 
beta-binomial distribution, which is 
wider than binomial.
➡ “Urn model” for beta-binomial distribution, 

where the parameter α controls the deviation 
from binomial.

20 30 40 50 60

5−10

4−10

3−10

2−10

1−10

20 30 40 50 600.8
0.9
1

1.1
1.2
1.3

np : # of reconstructed protons
da

ta
/fi

t

Binomial : χ2/NDF ~ 3.3
Beta-binomial (α=15) :
χ2/NDF ~ 1.0

STAR Preliminary
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Nw : white balls, Nb: black balls, ε: efficiency
Nw = ↵Np " = Nw/(Nw +Nb)


