CW High Voltage Control
S. Heppelmann Version 1

System configuration

Higher Level Controllers

Yale Controller

* Controls 16 Yale bases per unit using 4 bit
12C address space

 Regulate 0~10V “HV Set” voltage via I2C
—>Non-volatile

e Read back 0~2V “HV Monitor” signal via
12C

e +30V = +24V, +9V = +6V to use existing
Cat5e connection

* -6V needs to be supplied separately

s Current limiting = Thermistors

Figure 1: Len's FMS Review Talk

Master Controller

* Four 4 channel multiplexers to control 16
controllers of either type = 256 Bases

e Distribution of 3 supply voltages

* |2C DIP switch provides non-volatile switch
settings for each voltage per channel

¢ Sequential turn-on = reduces the transient
load on the power supply

* Total continuous current: 1~3 Amps per
channel = Over-current and over-voltage
protection PENNSTATE

10

FMS Inner Calorimeter HV System

PC Light-tight, ventilated enclosure (half of FMS)

Up tol6 controllers of either type

|
| I 2
UsBtolC 1 Master Controller ;I

R e T
m\ e
[e I\
£ B PSU Yale
Controller Controller

| PSU Base
[_esugase |

Uptole PSU basq

PSU Yale
s(Iontroller Controller

Up tol6 Yalg| Bases

m\
PSU / \ Yale

[Cesusae | | Controller Controller

|_esugase |
PSU Yale

Controller Controller

Cat5e (+9V, +3@V, SCI, SDA)

DC power and control for each half of the FMS.
Catbe & —6V

_ Ribbon cable

Figure 2: Len's FMS Review Talk.

| +30V/1.2A

’

O -6/0.5A
B
[y
.
' Conema]
.
s gase

PENNSTATE

9

Using CW high voltage control program “console.exe” is a windows program. The example below
involves a windows XP environment with Cygwin running a bash shell.
There are three types of commands the the 12C console program

There are three types of input commands for the console program:

1) Raw I12C Read and Write

- Format: 4 fields of 1 hex byte

[W/R] [ADDR] [CNT] [Repeat]
(string of CNT data bytes for W/R=1)

[W/R] = 0 for read command and 1 for write command

[ADDR] = 12C Byte address

[CNT] = No of data words read or written

[Repeat]=0 Normal ; N for repeat of command N times (For debugging
hardware)

O O O O

2) Execute script files “@”

@Filename.txt [arg1] [arg2] [arg3]

o Run a script file from the debug directory.

o Arguments can be passed and will replace $0, $1], $2 etcin
script file.

o Scripts can call scripts up to depth of 10.

wyn
!

3) Exclamation point commands

I[command name] [arguments]
for example:
assuming a path is established to a YALE or PSU board (including direct connection)

Irdac [ADDR]
- Read High Voltage settings for address ADDR.
Irdac [ADDR] [setvalue]
-Set Digital Pot and thus reset High Voltage
IPSUbase
-declare a PSU base
IYALEbase
- declare Yale base
ISETdevice [N]
-Talk to the N’th DevaSys device found on the USB bus. (dev=0 or dev=1)
IHVsave [ADDR]
-On Channel [ADDR] Copy the volatile voltage setting to non-volatile (powerup) memory.
IHVrestore [ADDR]
-On Channel [ADDR] restore the volatile HV to non-volatile value.
IHVGetTol [ADDR]
-Update the High Voltage Calculation Constants to account for rdac fabrication variation of ~10%.
ISleep [MSEC]
- Sleep for MSEC milliseconds
IScriptRepeat [COUNT]

- sets a counter indicating the number of times that the next command script (ie. “@file.txt”) will reopen and
execute. A script with a Sleep command in it can be used to run periodically and log results. A counter exists at
each level of “@file.txt”. The counter at each level counts down toward zero each time the script file is reopened

-The nominal value for the counters at each level is zero. Counters only are increased when a “IScriptRepeat [n]”
is input.

Learn by example

1) Go to directory where
executable lives.

The *.txt files are script files that
include legal commands for the

program. When the program
starts, the file “first.txt” is
automatically executed.

S5 cd Console_cii_gxit/déhﬁg).

5 1ls
BuildLog.htm
HUSet.obhj
12Call.ohj
SetMasterPSU.txt

hatch.txt
hoardcheck.txt

.embed.manifest
.embed.manifest.res
.intermediate.manifest

flongtest.txt
g.txt
getdata.txt
getdatatst.txt
log.txt
logl . txt
log2 . txt
log3.txt
log4.txt
log5.txt
log?-2Ba.txt
log?-28b.txt
nt .dep

of fmult.txt
onch_rdif .txt
onch_read.txt
onchan .txt
rdac . txt

rdif .txt

rdif long.txt
readrdac . txt
readspair.txt

sl.txt
sl¥ale.txt
s2.txt
s2b.txt
s3d.txt
setspair.txt
setvolt.txt
setypair.txt
stdafx.obj
stepup_log.txt
strfilter.ohj
tablel.txt
table2.txt
table3d.txt
test2.txt
test3.txt
ushiZcio.dll
vc?B.idh
vc?8. pdh
vc?B.1db
vc?8. pdh
yalebhasepower.txt

resrdac.txt

The file “first.txt” includes one statement “@offmult.txt”, that runs a script file of the same name. The
script “offmult.txt” sleeps for 1 second and then executes a sequence of raw i2c read/write commands.
These commands scan through | & - /deskioj

% more first.txt

the i2c address space, closing s nore first

communication with each of 16
bases. The assumption is that offnulrotie
the computer is directly

connected to a YALE or PSU

daughter board.

If the computer is plugged into a
master controller then there is
no path to a YALE or PSU
daughter board until such a path
is established. In that case,
these commands do nothing.

@ @ & &8 &8 &8 8 @ @ @ @ @ 8 @ D BE

So now we are ready
to run the program
“console.exe”.

We see that the
“first.txt” file ran and
called “offmult.txt” as
expected.

Output is also logged
to a file “log.txt”.

With the Enter prompt
the program waits for
one of three
commands.

1) raw i2c command
2) @ command
3 I command

Also you may enter
“?” for help

E ~fdesktop/Console_C11 _exit/debug

¢ ./console.exe
A 58 1 51

Mumber of ARgs=1

c:sUserssheppe 1nDesktopsGonsole_Cl1_exitsdebugsconsole .exe
c:sUzeprssheppe lnDesktop Console_Cl1_exit>debug™

c:sUzerssheppe InDesktop™Conzole_Cl1_exitdebug™first.txt

vers =772
Mumber of Devices=8
of fmult . txt
of fmult.txt[1,8]1: Sleep 1
of fmult.txt[2.81: Type=1.A
of fmult . txt[3.81: Type=1.A
of fmult.txt[4.8]1: Type=1.A
of fmult . txt[5.81: Type=1. A
loffmult.txt[G,B]: Type=1.A
of Fmult txt[?.81: Type=1.A
: Type=1.0
: Type=1.A
1z Type=1,
1z Type=i,
Type=1,
Type=1.
Type=1,
Type=1,
Type=1,
Type=1.

of fmult . txt[16.8
of fmult . txt[17.8

@ milliseconds

»=EA.N attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,
attempt=2,

ZZZZZZZTZE
P b e e o e e ek
DEEEEEES

Enter
[UsR{1-@>]1 [AddrChex>] [cnt:]1 [loopl

& -~/desktop/Consal
A= '

Enter
?[H/R(i/ﬁ)] [AddrChex>] [ent:] [loopl

rav iZc readswrite H
opl
waa=- for uwrite on N words

Set or Read set base HU
Read HU from addr
Interpret as YALE bhase
Interpret as PSU bhase
Hezset [addrli6l to powerup

[@8-1 for readrwritel [iZc HER adde] [N words] [nlo
[datall [data2l [data3l...[dataN]

trdac [addrlé EB-FE] [optional valuel
tradc [addrié EB-FE]

tYALEhase

tPSUbase

*HUrestore [addrib]

Each base is reached by setting devIB@—11_chiplBA-31 _chanlB-31 _hasel@-151

Set device to B or 1

Bn [Chipl 8 to 3
Set [Chanl @ to 3
Set to [Chanl>3 to
deselect chip Conly one
chip at a time?

read controller mem

write controller mem

read controller id

report crl chip registers

=et or read power chip-/chan

check for ctrl bhoard ids
iZc read set rdac array

iZ2c read rdac HU setpoints
exit program

*SETdevice [dew]
L]

isetctrl [chipl [chanl

*rmem [startaddr] [nbytes]
tumem [startaddr] [nbytes]
frctl

fchkchip [chipl

tpover I[mask bitB:18U-bitl:38U-bit2:-6U1
Bname [paramB] [paramll..

*ScriptRepeat [nl

t51leep I[ml

fcheckall 1

tcheckall 2

tcheckall 3

fcheckall 4

tReadTable [filel

tDumpTabhle [filel

tLoadrdac

fcheckall &

tcheckall 6

texit

[stringl

Enter
[W RC1-8>]1 [Addr<hex>] [ent:] [loopl

Each base associated with a YALE or PSU card has one of 16 addresses. A commutation path determines
which 16 base address space (which of the 32 YALE or PSU cards) is being accessed. The communication
path is defined by setting

- dev(0-1)
- chip (0-3)
- chan (0-3)

The mapping is fully defined at this link location
http://drupal.star.bnl.gov/STAR/blog/heppel/2010/jun/25/deadcellsrun10179077#HighVoltage

There are two Master control cards used to control the FMS small cells, dev=0 for the South Small Cells
and dev=1 for the North Small Cells.

To communicate through to a particular YALE or PSU daughter card (Figure 1 and Figure 2) a
communication path must be established. The Master control card has 4 routing chips and each chip can
enable 1 of 4 paths providing 16 distinct paths to one of the 16 attached YALE or PSU cards.

(Note: only one path should be established at a time)

This is how we would open up a path to dev=0, chip=3, chan=1

Enter
[W/R(1/0)] [Addr(hex)] [cnt:] [loop]

ISETdevice 0
Enter

[W/R(1/0)] [Addr(hex)] [cnt:] [loop]
Isetctrl 3 2

After using this path, it is important to close it by setting the chip to a non-channel .
“Isetctrl 3 4” to disable path through chip 3.

With the channel enabled, it is possible to talk to the i2c addresses on a PSU base or the similar control
registers on the YALE mother board.
For each base there are multiple addresses registers defined.

Setting either of 2 values on the rdac chip (a variable resistor with 256 steps in resistance) can be done
when the path has been mapped. The stored numbers are the volatile active voltages and the non-
volatile reset values that survive repowering.

http://drupal.star.bnl.gov/STAR/blog/heppel/2010/jun/25/deadcellsrun10179077#HighVoltage

To set the volitile addr=0xEOQ to value=0XAB

Enter
[W/R(1/0)] [Addr(hex)] [cnt:] [loop]
Irdac EO AB

To read back the volatile value from addr=0xEO

Enter
[W/R(1/0)] [Addr(hex)] [cnt:] [loop]
Irdac EO

To save the volatile value to the non-volatile backup

Enter
[W/R(1/0)] [Addr(hex)] [cnt:] [loop]
IHVsave EO

To set the volatile value to the non-volatil

e backup value

Enter
[W/R(1/0)] [Addr(hex)] [cnt:] [loop]
IHVrestore EO

Low Voltage Control
The master boards are connected to 3 low voltage supplies.

V1=9V ... control bit 0 of hvmask required for communications
V2=30V control bit 1 of hvmask required for high voltage
V3=-6V control bit 2 of hvmask required for some additional features

The state of the low voltage for a particular YALE or PSU board is reflected by a 3 bit mask -> hvmask

To check the value of the mask for a particular board
Ipower

To reset the value of the mask for a particular board (and thus to turn on/off the low voltage power)
Ipower [hvmask]

To turn on all low voltage
Ipower 7

To turn off all low voltage
Ipower 0

Reading back voltage.

The voltage is read with a 8 bit ADC using the command which samples the actual high voltage.
Iradc [addr]

To correctly interpret the voltage, we must declare the path as a YALE or PSU mother board before
reading the ADC as above.

IPSUbase
or
IYALEbase
before

Iradc [addr]

Local values of all rdac values.

The console program stores copies of all the Irdac setpoint values.
They are refreshed when we call
Icheckall 3

This array of setpoint values can be save to a file
IDumpTable [file]

Or can be read back in from a file
IReadTable [file]

These values can then be loaded into the CW system with
ILoadrdac

