Transverse momentum Dependence of π^0 SSA in FMS Run 11 RHIC&AGS Users Meeting 2012

S. Heppelmann (PSU) for STAR collaboration June 12, 2012

- Background
 - Physics Questions
 - Cross Ratio method vs. $A(\phi)=A_N \cos(\phi)$ fitting method
 - Previous FMS and STAR results
 - About P_T dependence of A_N
 - FMS Event Topology and Event Selection
- Present High Statistics A_N for STAR Run 11 \sqrt{s} =500 GeV
 - X_F dependence
 - P_T dependence for fixed X_F
 - Dependence on event topology

Proton Forward Scattering at High PT **QCD** Perspective

PQCD (Leading Twist):

Factorized Cross Section= (initial state) x (quark scattering) x (fragmentation)

- Does good job of predicting the spin averaged cross section.
- Leading twist cross section does not depend on transverse polarization.

RHIC Blue Beam

1) Cross Ratio Transverse Asymmetry

2)

 $A(\phi)$ Fit

Method 1: Cross Ratio:

$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \cong \frac{1}{P} \frac{\sqrt{S^{\uparrow}N^{\downarrow}} - \sqrt{N^{\uparrow}S^{\downarrow}}}{\sqrt{N^{\uparrow}S^{\downarrow}} + \sqrt{S^{\uparrow}N^{\downarrow}}}$$

Method 2:
$$a_N(\phi) = a_0 + A_N \cos(\phi)$$

Viewed from collision point

Right(N): $Cos(\phi) < -0.5$

Fix a₀ for full data set

For many small data subsets one parameter fit for A_N Advantage: Every fitted value of A_N comes with error and chi².

New paper on η / π^0 at $X_F > 0.5$ arXiv:1205.6826v1

- π^0 cross section in good agreement with PQCD calculation.
- η / π^0 cross section ratio similar to that observed where jet fragmentation is dominant.
- $A_N(\eta) > A_N(\pi^0)$ for $X_F > 0.55$

STAR Published Run 6 (FPD \sqrt{s} = 200GeV)

PRL 101, 222001 (2006)

- Rising A_N with X_F (0< X_F <0.5) from 0% to 5-10%
- No evidence of fall in A_N with increasing P_T up to $P_T \sim 3$ GeV/c

From FMS Run 8, STAR has Expanded Rapidity Coverage -1<Y<4.2

STAR Forward Meson Spectrometer 2.5 < Y < 4.0

- Leading twist cross section does not depend on transverse polarization.
- Spin Dependence require refinements like:
 - Beyond Collinear Factorization (Sivers)
 - Models of spin dependent factorization (Collins)
 - Models that go beyond leading twist.

Sivers Model: Initial quark picks up k_T from initial state wave function, proportional to orbital angular momentum.

Jet based Asymmetry, significant dependence of A_N on the details of near side jet fragments is not expected!

<u>Collins Model:</u> Final π^0 picks up k_T from fragmentation of polarized

quark. Vanishing jet asymmetry. Observed A_N will depend on the details of near side fragmentation!

A toy model for proton Cross Section at large x.

$$\sigma(p_T) \sim \frac{(1 - x_F)^5}{p_T^6}$$

<u>Suppose</u> initial state structure or final state fragmentation modifies the hard scattering $\mathbf{p_{T}}$.

If the spin dependent initial/final state momentum is $\mathbf{k_{T}}$.

For spin proton spin up: $\langle p_T \rangle \Longrightarrow \langle p_T \rangle - k_T$ For spin proton spin dn: $\langle p_T \rangle \Longrightarrow \langle p_T \rangle + k_T$

$$A_N(p_T) \sim \frac{\sigma(p_T - k_T) - \sigma(p_T + k_T)}{2\sigma(p_T)} \sim \frac{-k_T}{\sigma} \frac{d\sigma}{dp_T} \sim \frac{6k_T}{p_T} \propto \frac{1}{p_T}$$

$$A_N(p_T) \propto \frac{1}{p_T}$$

Isolation of π^0 's

Event Selection:

Analyze FMS for all photon candidates.
 (Showers that are fit successfully to photon hypothesis)
 A photon candidates must have a minimum of 6
 GeV in the small inner detector or 4 GeV in the outer cells.

- 2. Find Clusters of EM energy grouping photon candidates that are within opening angle cone $\Delta\theta$ (relative to energy weighted center)
- 3. We consider 2 event classes {1 and 2}
 - 1. $\Delta\theta$ =0.07 2 Photon clusters, PiO Mass (<u>isolation radius of .07 radians</u>).
 - 2. $\Delta\theta = 0.03$ 2 Photon clusters ,PiO Mass (<u>isolation radius of .03 radians</u>).

Class 1 Events: $\Delta\theta$ =0.07 2 Photon clusters, π^0 Mass (less inclusive)?

- 40 GeV < Epair < 100 GeV
- Z=|(E1-E2)/(E1+E2)| < .7
- 2.7 < Y < 4.0 (Full FMS Pseudo-rapidity)
- Selection of π^0 Peak (0.02 < Mass < .3)
- Average polarization: 51.6% ±6.7% (RHIC Spin CNI Group http://www.phy.bnl.gov/cnipol/)
- Integrated Luminosity: 22 pb⁻¹

Cross Ratio Transverse Single Spin Asymmetry for Run 11

 π^0 (2 Photon Cluster) Cluster size = 0.07 Rad For Blue Beam (Forward) Full FMS rapidity range (2.6<Y<4.1)

Right(N): $Cos(\phi) < -0.5$

Compare **new** \sqrt{s} =**500 GeV Run 11** Full FMS Data on right with **Run 6** \sqrt{s} =**200** published data below.

Compare new $\sqrt{s=500}$ GeV Run 11 Full FMS Data on right with Run 6 $\sqrt{s=200}$ published data below.

Scale of A_N similar but starts at lower X_F in Run 11 data.

Blue Beam A_N

As and alternative to Cross Ratio, the raw asymmetry can be plotted as a function of $Cos(\phi)$

(with polarization axis at Phi= $\pi/2$)

Slope $=A_N$

Intercept = Luminosity Ratio for data set

Luminosity ratio for all ~ - 0.31 ±.05 %

Slope Fits are are consistent with Cross Ratio Method.

Higher Twist or other pQCD related models suggest $\underline{A_N}$ should fall at large $\underline{P_T}$ with at least 1 power of $\underline{P_T}$.

These plots include 2 parameter fits for A_N vs P_T :

$$A_N(P_T) = [p_0] \times (P_T)^{[p_1]}$$

Fits are shown for both the **70 mRad** and **30 mRad** isolation cones.

Systematic Errors

• Run 11 blue beam polarization 51.6% ±6.7

$$\frac{\Delta A_N}{A_N} < 13\%$$

- Non π^0 signal <10%
- Similar asymmetries for Background:

$$\frac{\Delta A_N}{A_N} < 5\%$$

$$\frac{\Delta P_T}{P_T} < 12\%$$

$$\frac{\Delta A_N}{A_N} < 5\%$$

- P_T uncertainty
 - Energy 10%
 - Angle 6%

$$\frac{\Delta P_T}{P_T} < 12\%$$

$$\frac{\Delta A_N}{A_N} < 5\%$$

Total Systematic Asymmetry Error Common to all data points.

$$\frac{\Delta A_N}{A_N} < 15\%$$

Conclusion

STAR π^0 A_N at \sqrt{s} =500 GeV

- A_N increases with X_F (as seen at lower energies).
- A_N less dependent on P_T than models predict to P_T~ 10 GeV/c.
 Data may be consistent with flat dependence on P_T.
- For data points at $X_F < 0.32$, A_N is significantly larger when the π^0 s are more isolated (0.07 Rad).

Additional E&M signals in the same general direction as the π^0 (>~5 GeV between 0.03 and 0.07 radians from the π^0) contribute little to the observed Transverse Single Spin Asymmetry.

- New Data Coming RHIC RUN 12
 - ~20 pb⁻¹ of \sqrt{s} =200 GeV pp
 - ~Transversely Polarized FMS data
 - ~ Similar measurement up to P_T>6 GeV/c

Extra

$$\Delta \sigma_x^2 = \frac{\sum_{i_{(e_i > e_0)}} (x_i - x_0)^2 \ln(e_i / e_0)}{\sum_{i_{(e_i > e_0)}} \ln(e_i / e_0)}$$

$$\Delta \sigma_{x} \Delta \sigma_{y} = \frac{\sum_{i_{(e_{i} > e_{0})}} (x_{i} - x_{0})(y_{i} - y_{0}) \ln(e_{i} / e_{0})}{\sum_{i_{(e_{i} > e_{0})}} \ln(e_{i} / e_{0})}$$

Separation of single photon cluster from two photon cluster based upon distribution of shower energy along a preferred axis.

$$\sigma_{\max} \equiv Max \, Eigenvalue \, of \begin{bmatrix} \Delta \sigma_{x}^{\ 2} & \Delta \sigma_{x} \Delta \sigma_{y} \\ \Delta \sigma_{y} \Delta \sigma_{x} & \Delta \sigma_{y}^{\ 2} \end{bmatrix}$$

Old algorithm with Energy weighted moments

Improved algorithm with log energy weighted moments.

Provides clearer separation Between π^0 and single photon. Clusters up to ~80 GeV.

From Len's Analysis,

-Single Photon peak changes little with Energy Single peak at SigmaMax~.5

March (2)

February (4) January (2)

Run 11 distributions of SigmaMax as a indicator of single photon vs π^0 only slowly degrades with higher energy.

Blue Beam Polarization Measurements

- CNI polarimeter data
- Average polarization for 51 consecutive time periods each data set represents
- $\sim \frac{1}{2}$ day of running.

As from previous slide:

For the " A_N vs $cos(\phi)$ " fits to all FMS data divided into the 51 consecutive time periods.

- 22.4 pb⁻¹
- 2.6< pseudorapidity<4.1
- 40 GeV < Energy π^0 < 100 GeV
- Average polarization 48%
- Corrected each of of 51
 sets (each set ~ ½ day of data)

Unpolarized Cross Sections agree with Collinear Factorization PQCD

PRL 97, 252001

PRL 97, 152302

- Jet Mid-rapidity (Left) and PiO Forward Rapidity (right)
- Cross section for π^0 nominally consistent with NLO pQCD.
- Cross section for η (with nominal fragmentation) may also be consistent.

Mass Distribution in η bins (40<E<60 GeV) r=1.53 Red=(cone 30 mR) Blue=1.53 (cone 70 mR)

Mass Distribution in η bins (60<E<80 GeV) r=1.41 Red=(cone 30 mR) Blue=1.41(cone 70 mR)

Mass Distribution in η bins (80<E<100 GeV) r=1.37 Red=(cone 30 mR) Blue=1.37(cone 70 mR)

Calculate the **asymmetry** and **error** associated with the "Extra Events" that are included in the 30 mR cone but not the 70 mR Cone

Let p be the average "blue" beam polarization.

Let A_{N30} be the Asymmetry for the 30mR cone

Let A_{N70} be the Asymmetry for the 70mR cone

Let ΔA_{N30} and ΔA_{N70} be the Errors.

Let $\,N_{30}$ and $\,N_{70}\,$ be the numbers of events.

$$pA_{N30} = \frac{N_{u30} - N_{d30}}{N_{u30} + N_{d30}} = \frac{N_{u30} - N_{d30}}{N_{30}}$$

$$pA_{N70} = \frac{N_{u70} - N_{d70}}{N_{70}}$$

$$p\Delta A_{N30} \sim \frac{1}{\sqrt{N_{30}}}$$

$$p\Delta A_{N70} \sim \frac{1}{\sqrt{N_{70}}}$$

Assume E=50 GeV: r=1.51 E=70 GeV: r=1.41 E=90 GeV: r=1.31
$$\frac{N_{30}}{N_{70}} = r$$

$$\frac{N_{30}}{N_{30} - N_{70}} = \frac{r}{r-1}$$

$$\frac{N_{70}}{N_{30} - N_{70}} = \frac{1}{r-1}$$

$$A_{ring} = \frac{r}{r-1} A_{N30} - \frac{1}{r-1} A_{N70}$$

$$\Delta A_{ring} = \frac{1}{\sqrt{N_{ring}}} = \frac{1}{\sqrt{N_{30} - N_{70}}}$$

$$= \frac{1}{\sqrt{N_{70}}} \frac{1}{\sqrt{r-1}} = \Delta A_{N70} \frac{1}{\sqrt{r-1}}$$

Compare Fits to constant A_N Red= 30mR cone but not 70 mR cont Blue=70mR cone Difference : (1.66% - .49%)=1.17% (8 sigma difference)

Compare Fits to constant A_N
Red= 30mR cone but not 70 mR cont
Blue=70mR cone
Difference 2.92% - 1.98%=0.94% (4 sigma difference)

Compare Fits to constant A_N Red= 30mR cone but not 70 mR cont Blue=70mR cone Difference 3.57% - 3.44% = 0.13% (0.4 sigma difference)

