Vertex Finders in STAR

Xin Dong

Lawrence Berkeley National Laboratory

With helps from:

Jan Balewski, Jonathan Bouchet, Matt Cervantes, Zilong Chang, Yuri Fisyak, Anthony Kesich, Ivan Kisel, Rosi Reed, Justin Stevens, Anthony Timmins, Yan Yang ...

More material can be found: http://www.star.bnl.gov/protected/common/PAC/VF/

Outline

- Introduction
- MinuitVF
 - Performances and Issues
- PPV
 - Performances and New Modifications
- KFParticle (proposal)
 - Proposed scheme and status
- Discussion of path forward

Current Vertex Finders in STAR

Reconstruction procedures:

Global track reconstruction,
Fit primary vertices from the "good" global tracks
- issues with pileup tracks
Fit global tracks to those primary vertices as primary tracks

Requirements to STAR vertex finders:

Rejection of pileup tracks (AA vs pp different levels) High efficiency and low contamination

A+A/d+A Collisions Minuit Vertex Finder

p+p Collisions Pile-up Proof Vertex Finder (PPV)

R&D proposal: KFParticle Vertex Finder (for all systems)

- FixedVertexMaker: often used in embedding now

TPC Pileups

TPC electron drift time + electronic integration time: 40 us = 25 KHz (100% dead)

Au+Au collision rate: ~ 50 kHz (Run11) d+Au collision rate: ~ 300 kHz (Run8)

p+p collision rate: ~1 MHz (200 GeV) ~ 4 MHz (500 GeV) (160 collisions per TPC event)

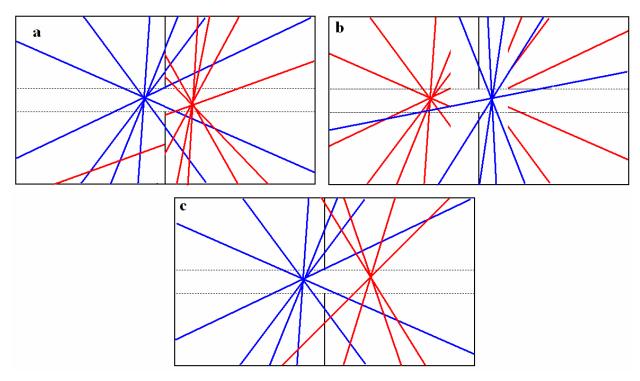
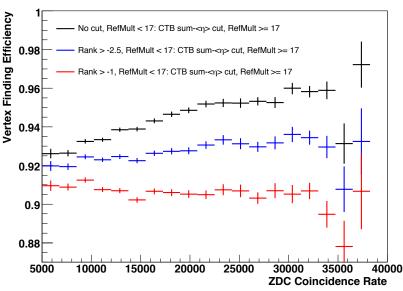


fig. a: Post-Crossing (red pile-up vertex occurs after the blue triggered vertex).

fig. b: Pre-Crossing occurs before triggered vertex.

fig. c: Same bunch pile-up is not separable

Minuit VF


- \Box 3D, χ^2 minimization
- Start from "good" global tracks (R_{dca} < 6 cm, No. of fit points ≥ 20).</p>
- Vertex candidates found via z-distribution of DCA to beam-line
- □ Crude peak-search performed w/ these tracks
- Minuit minimization routine and vertex rank
- □ Ranking depends on:
 - √ <dip angle> track vs. z-position of vertex
 - Number of vertex tracks which are matched to EMC hits
 - ✓ Number of vertex tracks which cross the TPC membrane

Anthony Timmins, Matt Cervantes

Performances and Issues

- Efficiency around 90% for Cu+Cu 200 GeV
- (Tested in recent data sets?)

- Ranking system works very well, but was not perfect...
 - ✓ Small overlap in ranking (Triggered/Pile-up)
 - When triggered event is not reconstructed, the pile-up vertex will automatically have the highest ranking...
 - □ Vertex Splitting issue
 - □ Occasionally (< 4%), vertex finder identifies two vertices from same event
 - ☐ The larger the vertex, the more likely the splitting....
 - ☐ Secondary vertex typical only a few tracks...

1D with beam line constrain, use matches to fast detectors (BEMC, EEMC, BTOF)

Select "good" global tracks: p_T>0.2 GeV/c, nHits/nPoss>0.7, DCA_{xv}<3cm Weight tracks according to matching conditions to fast detectors, TPC central membrane Use cumulative likelihood function scan along z direction with windows of 3cm widths Valid primary vertex requires 2 matched tracks

Ranking based on likelihood (based on track qualities) and matches to fast detectors

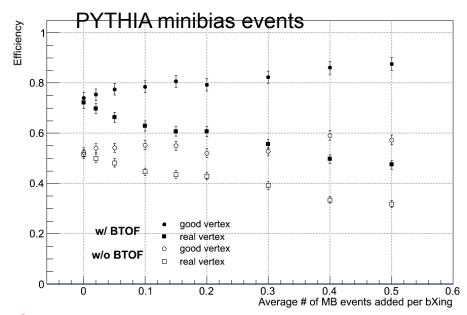
Detector	Match Factor	Veto Factor	"Dunno" Factor	TPC Detector element is a rectangle in
BEMC	4	3/4	1	wetoed ← φ x η space → 2 matched BEMC
EEMC	4	3/4	1	Masked Element
TPC	5	1/5	1	Beam Pipe

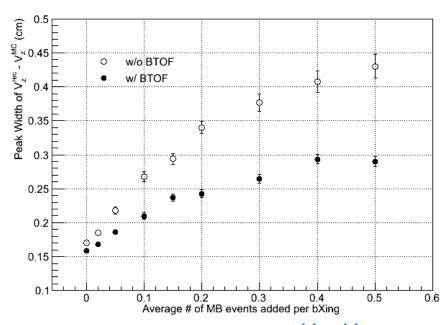
Jan Balewski, Rosi Reed

Proposed Change I – Adding BTOF

Proposed change for Run12 pp200 production -

Add BTOF match/veto in PPV – similar as BEMC


- particularly benefit the vertexing efficiency for pp minibias events

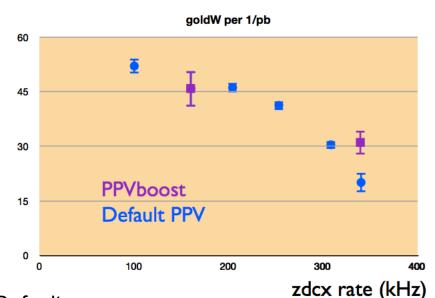

MC study with Run12 geometry

http://drupal.star.bnl.gov/STAR/blog/yyang/2012/nov/28/mc-study-ppv-with-btof-run-12-geometry

Test with Run12 real data for different triggers

http://drupal.star.bnl.gov/STAR/blog/yyang/2012/nov/06/ppv-test-w-and-wo-btof-with-run12-real-data-three-trigger-rate-levels-and-serveral-triggers

Yan Yang


Proposed change II – change of track cuts

 Propose change for run12 pp500 W production http://drupal.star.bnl.gov/STAR/event/ 2012/12/19/software-and-computing-meeting/ ppv-modification-2012-w-production

DCAxy Max: 3 cm -> 2 cm nFit/nPoss ratio Min: 0.70 -> 0.51

• Test with jet embedding events (PYTHIA jets into pp500 zero-bias events) http://people.physics.tamu.edu/changzl/ directory/STAR/01_2013_PPV/ ppvstudy.html

pp 200? Together with BTOF addition?

Default

Run Number	ZDCX (kHZ)	MC Events	JP0 Events	Good Primary Vertex
13108054	14.7	300,000	10,468	10,009 (95.6%)
13078014	130	300,000	12,382	11,250 (90.8%)
13099025	380	300,000	17,068	8,979 (52.6%)

PPVboost

Run Number	ZDCX (kHZ)	MC Events	JP0 Events	Good Primary Vertex
13108054	14.7	300,000	10,468	10,163 (97.1%)
13078014	130	300,000	12,382	11,357 (91.7%)
13099025	380	300,000	17,068	13,067 (76.7%)

Justin Stevens, Zilong Chang

KFV – KFParticle Vertexer

KFParticle class - developed by GSI team,

https://www.gsi.de/documents/DOC-2010-Jun-126-1.pdf

Allow fit to all vertices in the same time with Kalman techniques (including secondary vertices)

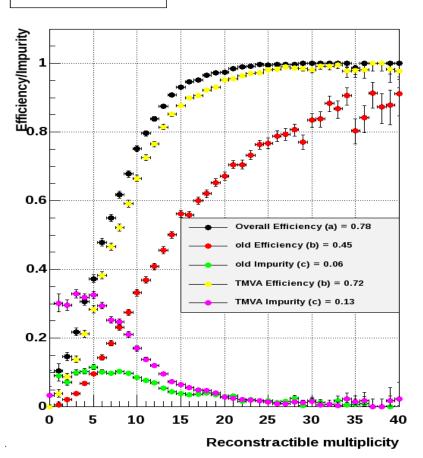
Simple access to vertex parameters

Adaptive vertex fitter with annealing (Rev. Mod. Phys. 82, 1419-1458 (2010))

(hard to know errors of track parameters, annealing helps to reach the optimal solution.)

- start with high temperature (at T > 1) by increasing track parameter errors,-
- fit vertex
- reiterate fit with decreasing temperature.
- the final value is T → 1.

KFV accepted only vertices with


Two or more tracks. two or more matches to fast detectors (ToF and EMC) and matched to beam line.

Ranking calculations consider vertex fit, matches/vetoes to fast detectors etc.

- New scheme using TMVA shows clear advantages with MC data, but depend on trigger/run condition Yuri Fisyak, Ivan Kisel

KFV Performance (vs. PPV)

PPV efficiencies

KFV efficiencies

KFV Status and Proposed Plan

- StKFVertexMaker for "Adaptive vertex fitter with annealing" based on KFParticle class developed by proponents.
- Plans:
 - Add kinematical fit for strange particle decay candidates
 - Revised and add ranking scheme based on TMVA
 - Detailed performance comparison with the current Minuit+PPV
 - status ? ready for collaboration review?

Discussion

Situations:

Pileup levels keep increasing

- RHIC projections at 2017

Au+Au @200 GeV ~60 kHz

p+p @200GeV ~2 MHz

p+p @510GeV ~15-25 MHz

HFT, treatment of secondary vertices / primary vertices

