Measurement of longitudinal single-spin asymetries for W^{\pm} boson production in polarized p+p collisions at $\sqrt{s}=510$ GeV at RHIC

Devika Gunarathne (for the STAR Collaboration)
Temple University
May 15, 2014

 W^{\pm} boson production in longitudinally polarized p+p collisions provides unique and clean access to the individual helicity polarizations of quarks and antiquarks in the colliding protons. Due to maximal violation of parity in the production, W^{\pm} bosons couple to left-handed quarks and right-handed anti quarks and hence offer direct probes of their respective helicity distributions in the nucleon. These can be observed in measured large parity-violating longitudinal single-spin asymmetries, A_L as a function of decay lepton pseudo-rapidity, η for W^{\pm} boson production at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC).

The final results of W A_L measured between $|\eta| < 1.1$ at $\sqrt{s} = 510$ GeV from the dataset collected in 2011 and 2012 running periods with an integrated luminosity of 86 pb⁻¹ and an average beam polarization of $\sim 55\%$ will be presented. The status for the analysis of W A_L from the larger dataset collected during 2013 (more than 3 times of 2012) at $\sqrt{s} = 510$ GeV with an average beam polarization of $\sim 54\%$ will be reported.