

Elliptic flow of light nuclei in heavy ion collisions at STAR

Chitrasen Jena

for the STAR collaboration

Institute of Physics, Bhubaneswar

Outline

- >Introduction
- >Analysis Method
- > Results and Discussions
- ✓ NCQ Scaling
- √ Centrality Dependence
- ✓ Mass Dependence
- ✓ Energy Dependence
- **≻Summary**

Introduction

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Coordinate-Space Anisotropy

Momentum-Space Anisotropy

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T}, y) \cos(n(\phi - \Psi_{r}))\right)$$

$$v_n = \langle \cos(n(\phi - \Psi_r)) \rangle$$
 $\phi = \tan^{-1} \left(\frac{p_y}{p_x}\right)$

 \triangleright Elliptic flow (v_2) is a good probe of the early stage of the collision.

Motivation

- ➤ Light nuclei and anti-nuclei are formed through coalescence of nucleons (produced/participant) and anti-nucleons*. This formation process is generally believed to happen at a late stage of the evolution due to their small binding energy.
- ➤ Production of light nuclei provides information of space-momentum correlation among these nucleons.
- ➤ By studying the v₂ of light nuclei and comparing to that of their constituent nucleons, we will have a better understanding of coalescence process for hadronization.

*H.H. Gutbrod et al., Phys. Rev. Lett. 37, 667 (1976).

STAR Detector

Data Set

Data: Run 7 Au+Au 200 GeV

Number of events: ~62 M

Data: Run 10 Au+Au 39 GeV

Number of events: ~14 M

➤ Measurement of the ionization energy loss (dE/dx) of charged tracks in the TPC gas are used to identify the light nuclei.

➤In run 10 Au+Au 39 GeV TOF information is used to enhance the light nuclei identification at high momentum region.

Analysis Method

>³He signal is almost background free for p_T > 1.4 GeV/c.

$$Z = \ln \left(\frac{(dE/dx)_{measure}}{(dE/dx)_{predict}} \right)$$

>TPC is used to determine the event plane.

$$\frac{dN}{d\phi} \propto 1 + 2v_2^{obs} \cos[2(\phi - \Psi_R)]$$

$$v_2^{final} = \frac{v_2^{obs}}{R_2}$$

R₂ is the second order event plane resolution

v_2 vs. p_T

- > v_2 of light nuclei increases with p_T in both beam energies.

Model Calculations: S. Zhang et al., Phys. Lett. B 684 (2010) 224

NCQ Scaling: Au+Au 200 GeV

STAR, PRC 72, 014904 (2005) STAR, arXiv:0909.0566 [nucl-ex] PHENIX, PRL 99, 052301 (2007)

$$d(p+n) : n_q = 2 \times 3$$
 $^3He(2p+n) : n_q = 3 \times 3$

 $ightharpoonup v_2$ of light nuclei follow the atomic mass number (A) scaling within errors. $ightharpoonup v_2$ of light nuclei scaled to the number of constituent quarks (NCQ) of their constituent nucleons, are consistent with NCQ scaled v_2 of baryons and mesons.

NCQ Scaling: Au+Au 39 GeV

A. Schmah (STAR), QM 2011

- ➤NCQ scaling holds good for v₂ of light nuclei in Au+Au 39 GeV.

Centrality Dependence

Similar to other hadrons, at more central collision the larger value of v_2/ϵ indicates stronger collective expansion.

STAR, PRC 77, 054901 (2008)

Mass Dependence

✓ Systematic uncertainties are under study.

November 7-11, 2011

Tsallis Blast-wave (TBW) parameters obtained from the simultaneous fits to p_T spectra and v_2 of π , K and p are used to predict the p_T spectra and v_2 of d and 3 He.

➤Both v₂ and <p_T> trends are consistent with expectations from TBW model fit.

V₂ values up to ³He mass has reasonable agreement within the Blast-wave formalism but differences seen in <p¬> beyond proton mass.
 V₂ of ³He measured from different event plane detectors (TPC and FTPC) are consistent with each other.

```
π, p spectra: STAR, PRL 97, 152301 (2006)
π, p v<sub>2</sub>: STAR, PRC 72, 014904 (2005)
STAR, PRC 77, 054901 (2008)
φ spectrum and v<sub>2</sub>: STAR, PRL 99, 112301 (2007)
```

³He spectrum: STAR, arXiv:0909.0566 [nucl-ex] TBW: Z. Tang et al., PRC 79, 051901 (2009) Z. Tang et al., arXiv:nucl-ex/1101.1912

Energy Dependence

➤ Light nuclei v₂ is comparable in both beam energies.

Summary

 ho_T dependence of v_2 is well described by Dynamical Coalescence Model.

➤ Number of constituent quark scaling holds good for v₂ of light nuclei.

 \triangleright At more central collision the large value of v_2/ϵ indicates stronger collective expansion.

➤Both v_2 and $<p_T>$ trends are consistent with expectations from Blast-wave model fit.

➤ Light nuclei v₂ is comparable in both beam energies.

Back-up

Tsallis Blast-Wave Model

$$\frac{dN}{m_T dm_T d\phi} \propto m_T \int_0^{2\pi} d\phi_s \int_{-Y}^{+Y} dy \cosh(y) \times \int_0^R r dr (1 + \frac{q-1}{T} E_T)^{-1/(q-1)}$$

where

Z. Tang et al., PRC 79, 051901 (2009)

Z. Tang et al., arXiv:nucl-ex/1101.1912

$$E_T = m_T \cosh(y) \cosh(\rho) - p_T \sinh(\rho) \cos(\phi_b - \phi)$$

$$\rho = \sqrt{(r\cos(\phi_s)/R_X)^2 + (r\sin(\phi_s)/R_Y)^2}(\rho_0 + \rho_2\cos(2\phi_b))$$

$$\tan(\phi_b) = (R_X/R_Y)^2 \tan(\phi_s)$$

 ρ = Flow profile in transverse rapidity

 ϕ_s = Azimuthal angle of the co-ordinate space

 ϕ_b = Angle of the flow direction

q = Degree of non-equilibrium

T (MeV)	q	$ ho_0$	$ ho_2$	$\frac{R_X}{R_Y}$	χ^2/ndf
88.3	1.049	0.86	0.054	0.89	512.6
± 1.2	± 0.003	± 0.013	± 0.001	± 0.002	/137

