

The elliptic flow of identified hadrons v.s. $\sqrt{s_{NN}}$ in Au + Au collisions at STAR

Xiaoping Zhang (*Tsinghua University/UCLA*) For the STAR Collaboration

- QCD phase transition and elliptic flow
- Elliptic flow (v_2) results and discussions
- Summary and outlook

Early Universe **Femperature** The Phases of QCD Future LHC Experiments **Quark-Gluon Plasma** Crossove **Future FAIR Experiments** 170 MeV-Critical Point Color Hadron Gas Superconductor Nuclear Vacuum Matter Neutron Stars 0 MeV-0 MeV 900 MeV Barvon Chemical Potential

Beam Energy Scan at RHIC Search for signals of phase boundary Search for QCD critical point

STAR, Phys. Rev. Lett. 92 (2004) 052302 STAR, Phys. Rev. Lett. 99 (2007) 112301 http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493

 ➢ NCQ scaling of elliptic flow (v₂) for multi-strange hadrons
 → Partonic degree of freedom
 ➢ Characterize different phases
 → Partonic dominate: NCQ scaling Hadronic dominate: small v₂ of multi-strange hadrons, NCQ scaling may break

Motivation

Minimum bias, Au + Au at $\sqrt{s_{NN}}$ = 200 GeV

Why NCQ scaling may break at hadronic phase?

Multi-strange hadrons

- Small hadronic cross sections, freeze-out early
- Small v₂ at hadronic stage
- NCQ scaling may break in hadronic dominated phase

Detector settings during STAR BES 2010-2011

Collisions: Au+Au
High Level Trigger
Online collision vertex
selection, reject beam
pipe events

$\sqrt{s_{NN}}$ (GeV)	Good MB events in Million
5.0	
7.7	~ 5
11.5	~ 11
19.6	~ 17
27	Expected ~ 150
39	~ 170

Particle identification and v₂ analysis

- Time projection chamber (TPC) full azimuth, $|\eta| < 1$ dE/dx v.s. momentum secondary vertex finder for K⁰_s, Λ
- Barrel Time-Of-Flight (TOF) full azimuth, $|\eta| < 1$ Particle flight time Clean separation of K, π up to $p_T = 1.6$ GeV/c
- Collisions centrality from uncorrected $dN_{ch}/d\eta$ in $|\eta| < 0.5$
- $v_2 = < cos2(\varphi \psi_R)/Res >$
- **TPC η-sub event plane for PID flow** Non-flow effect reduced

Particle reconstruction

 S/B of resonances [\$\phi\$ and K*0(892)] significantly improved with additional TOF PID

v₂ of charged hadrons @ 7.7, 11.5, 39 GeV

- Different event
 plane detector
 TPC (| η |<1)
 FTPC (2.5<| η |<4)
 BBC (3.3<| η |<5)
- Different v₂ analysis method EP, cumulant method
- Overall, good agreement
- 7.7, 11.5 GeV: less difference between $v_2\{2\}$ and $v_2\{4\}$ \rightarrow non-flow, fluctuations STAR, M. Mitrovski, S. Shi, QM2011 poster

v₂ of charged hadrons @ 7.7 – 2760 GeV

STAR, M. Mitrovski, S. Shi, QM2011 poster ALICE, Phys. Rev. Lett. 105 (2010) 252302

 Comparison of differential v₂(p_T) over 2.6 orders of magnitudes in energy
 2760/7.7 ~ 360

 Similar v₂(p_T) shape p_T = 2 - 4 GeV/c: almost same v₂(p_T) Differences increase at low p_T

Particle and anti-particle v_2 (π and K)

Electric quadrupole moment of QGP?

- Chiral Magnetic Wave: interplay of CME and CSE
- CMW induces a static electric quadrupole moment of QGP at finite baryon density
- Elliptic flow of positive hadrons < negative ones $v_2(\pi^+) < v_2(\pi^-)$, calculated difference at $\sqrt{s} = 11$ GeV ~ up to 30%
- Data: difference ~ 10% at 11.5 GeV

STAR, B. Mohanty, D. Gangadharan, QM2011

Y. Burnier et al., arXiv:1103.1307 10

Particle and anti-particle v_2 (Proton and Λ)

Proton: v₂(proton) > v₂(anti-proton) at three energies
 Difference increases with decreasing energy

11

• Λ: similar behavior

STAR, A. Schmah, QM2011

Particle and anti-particle v₂ difference

- Baryon and anti-baryon v_2 differences: ~10% at higher energies increase dramatically @ 7.7 and 11.5 GeV
- Baryon transport to mid-rapidity? absorption in hadronic environment?
- NCQ scaling between particles and antiparticles is broken at 11.5 and 7.7 GeV 12

Identified hadrons v₂ v.s. p_T

- Mass ordering holds at low p_T , except for ϕ -mesons
- φ-mesons v₂ @ 11.5 GeV is small compared to other hadrons

 v_2 v.s. m_T - m_0

- Meson ↔ Baryon splitting for particles @ 11.5 and 39 GeV Splitting is smaller @ 7.7 GeV
- \$\overline\$-mesons @ 11.5 GeV show a different trend

π⁺, K⁰_S, p, Λ and Ξ⁻ approximately follow one common curve
φ-mesons @ 11.5 GeV does not follow the trend of other hadrons. Mean deviation from pion distribution:

 $0.02 \pm 0.008 \ (\rightarrow 2.5 \ \sigma)$

NCQ scaling test $- v_2/n_q$ v.s. $(m_T - m_0)/n_q$

• π^+ , K⁰_S, p, Λ and Ξ^- approximately follow one common curve

 φ-mesons @ 11.5 GeV does not follow the trend of other hadrons.

$v_2(\phi) / v_2(proton)$

- $\sqrt{s} = 200 \text{ GeV}, v_2(\phi) \sim v_2(p) \text{ at low } p_T \text{ (mass ordering)}$
- The ratio $v_2(\phi)/v_2(p)$ at low p_T decreases with decreasing beam energies

17

Why $\phi(s\overline{s})$ is special?

- K⁺K⁻ is not the main production channel in our interested region
- ϕ meson v₂ ~ 0, if only from string fragmentation
- ϕ meson has small hadronic cross section. $\sigma(\phi N) \sim 10 \text{ mb}$
- Small ϕ v₂ at hadronic phase
- ϕ meson v₂ indicates collectivity contribution from partonic interactions decreases with decrease in center of mass energy

Light nuclei v₂

STAR, C. Jena, ICPAQGP 2010

- Light nuclei can be used to study nucleon coalescence
- Currently only ~10% of total statistics @ 39 GeV in light nuclei analysis

Summary and outlook

- STAR preliminary v_2 results in $\sqrt{s} = 7.7$, 11.5 and 39 GeV Au+Au collisions have been presented
- ➤NCQ-scaling between particles and antiparticles is broken @ 11.5 and 7.7 GeV

➢ Outlook

19.6 GeV data is under processing, 27 GeV data will be taken at the end of Run 2011

Backup

Mass ordering violation for ϕ meson v₂?

(a) ideal hydro: mass ordering for \$\phi\$ meson v₂
 (c) ideal hydro + hadronic rescatterings: violation of mass ordering for \$\phi\$ meson v₂ due to small hadronic cross section of \$\phi\$
 Comparison of \$\phi\$ meson v₂ to proton v₂ is useful for

22

understanding the effect of the hadronic phase

Outlook – Beam Energy Scan at STAR

Mapping QCD phase diagram with multi-strange hadrons v_2

Nu Xu et al., SQM 2009 presentation