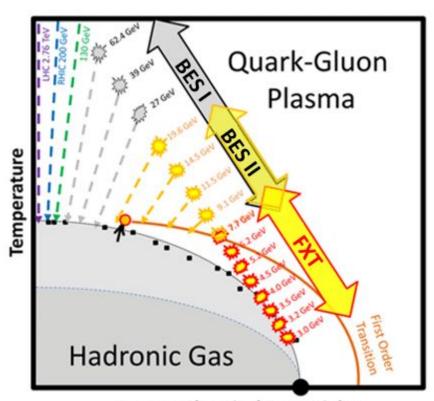


Study of first-order event plane correlated anisotropic flow in heavy-ion collisions at high baryon density region

10th Asian Triangle Heavy-Ion Conference (ATHIC 2025)
Indian Institute of Science Education and Research Berhampur

Sharang Rav Sharma (for the STAR Collaboration)
Indian Institute of Science Education and Research Tirupati

Outline


- Introduction
- STAR Experiment
- Results and Discussion
 - ightharpoonup Directed flow $(v_1 \{ \Psi_1 \})$ and Triangular flow $(v_3 \{ \Psi_1 \})$
 - **■** Experimental Measurements
 - Model Comparison
- Summary

Introduction

At very high temperature/energy density a deconfined phase of quarks and gluons is expected to form → Quark-Gluon Plasma (QGP)

Baryon Chemical Potential μ_{B}

RHIC BES Program Searches for:

- First-order phase transition
- ◆ QCD critical end point
- ◆ Turn-off of QGP signatures

Phase-I

 $\sqrt{\mathbf{s_{NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV (COL)

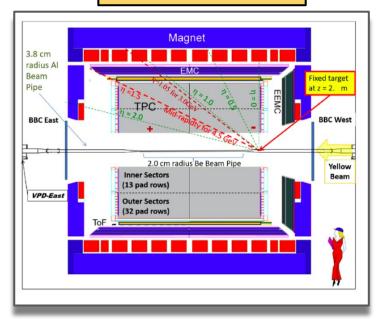
Phase-II

 $\sqrt{\mathbf{s_{NN}}}$ = 7.7, 9.2, 11.5, 14.6, 19.6, 27 and 54. 4 GeV **(COL)**

 $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7, 9.1, 11.5, and 13.7 GeV (FXT)

Nucl. Phys. A 967 808-811 (2017)

STAR Experiment


endcap Time-Of-Flight Event Plane Detector inner Time Projection Chamber

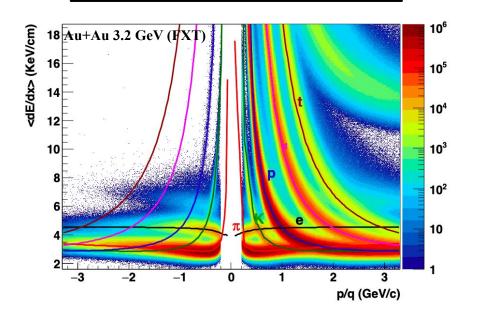
C. Yang et al., JINST 15 C07040 (2020)

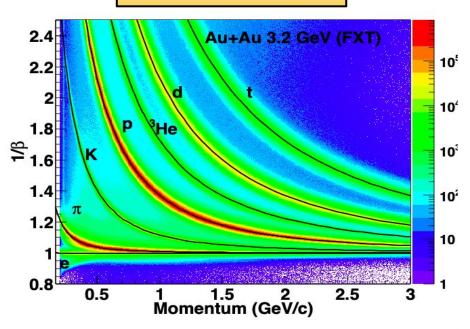
Solenoidal Tracker At RHIC (STAR) is one of the detector systems at RHIC consisting of several sub-detectors

Fixed-Target (FXT) program at STAR \rightarrow low center-of-mass energies and high baryon density region

Fixed-target mode

Nuclear Phy A 808-811 (2017)


√s _{NN} (GeV)	$\mu_{\rm B}$ (MeV) \approx	Events analyzed
3.2	679	220 M
3.5	649	110 M
3.9	614	110 M
4.5	568	100 M


Particle Identification

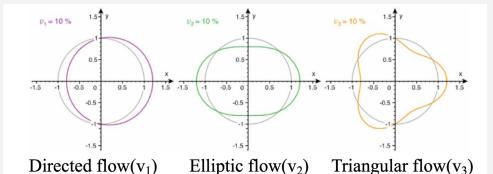
Time Projection Chamber (TPC)

Time of Flight (TOF)

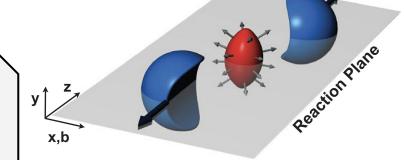
- Two main detectors are used for particle identification in **STAR**
 - Time Projection Chamber (TPC)

$$z_X = \ln\left(\frac{\langle dE/dx\rangle}{\langle dE/dx\rangle_X^B}\right)$$

$$m^2 = p^2 \left(\frac{c^2 T^2}{L^2} - 1 \right)$$


Anisotropic Flow

- ☐ Flow is the measure of azimuthal anisotropy of particles
- Azimuthal distribution of particles


$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{\mathrm{d}^{2}N}{2\pi p_{T}\mathrm{d}p_{T}\mathrm{d}y} \left\{ 1 + \sum_{n\geq 1} 2 v_{n} \cos\left[n\left(\phi - \Psi_{n}\right)\right] \right\}$$

$$v_n = \langle \cos[n(\phi - \Psi_n)] \rangle$$

Why v is important?

- ☐ Sensitive to the equation of state
- ☐ Sensitive to early times in the evolution of the system

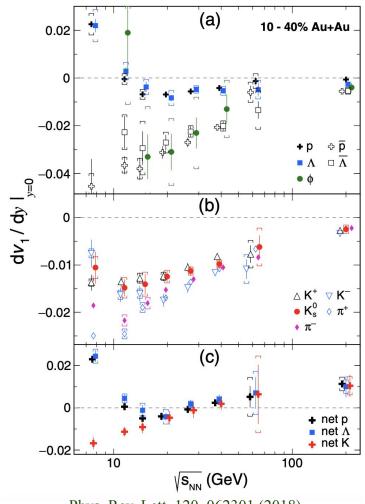
R. Snellings, New J.Phys.13:055008 (2011)

Directed flow

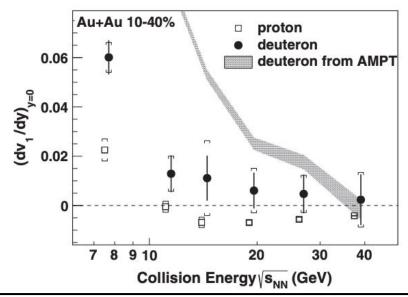
$$v_1 = \langle \cos(\phi - \Psi_1) \rangle$$

Sideward motion of emitted hadrons with respect to collision reaction plane

Triangular flow

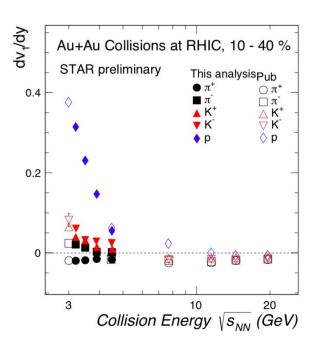

$$v_3 = \langle \cos 3(\phi - \Psi_1) \rangle$$

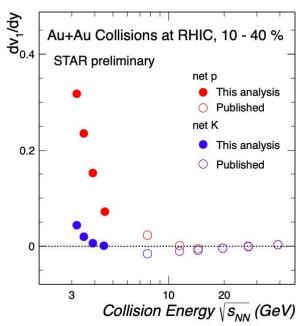
Driven by the shape of the initial collision geometry at low collision energies

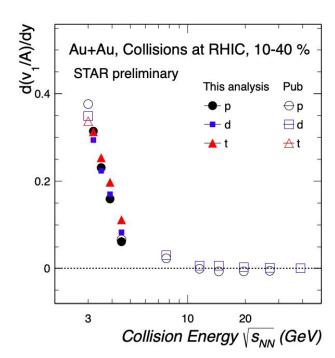

Motivation for v₁ measurement

Phys. Rev. Lett. 120, 062301 (2018) Phys. Rev. C 102, 044906 (2020)

Nucl. Phys. A750, 121 (2005)

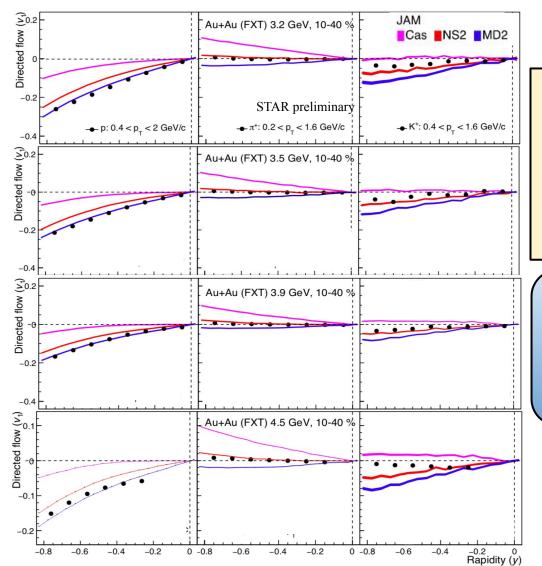



- dv₁/dy for proton contrary to mesons showed a non-monotonic trend as function of collision energy
 Change of sign
- Net particle → the excess of a particle over antiparticle → contribution of transported quarks w.r.t produced
- **Softening of EoS** and a **minimum in v**₁ predicted as a signature of first order phase transition.
- Observed minimum in net-p v₁ between 11.5 and 19.6 GeV, no minima observed for net-K
- Light nuclei $d(v_1/A)/dy$ within systematic and statistical uncertainties \Rightarrow **Approximate mass no. scaling**



Collision energy dependence of dv₁/dy

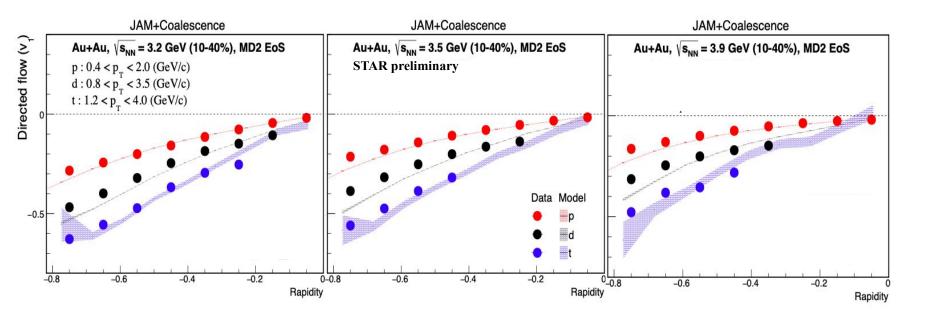
Studied energies: Au+Au collisions at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9, and 4.5 GeV (FXT)


- \bullet Increasing collision energy \rightarrow decreasing v_1 slope for the studied energies
 - \rightarrow $dv_1/dy|_{\pi^+}$ is negative whereas $dv_1/dy|_{\pi^-}$ is positive \Longrightarrow Spectator shadowing and Coulomb interactions
- ♦ Minimum net-p at 11.5 19.6 GeV whereas minimum net-K at 4.5 7.7 GeV
- Approximate mass no. scaling is observed in the v_1 slope \Rightarrow Nucleon coalescence

Phys. Rev. Lett. 120, 062301 (2018), Phys. Rev. C 102, 044906 (2020)

JAM model comparison

JET AA Microscopic Transportation Model (JAM2)


- Cas: no interactions among particles
- NS2: mean-field potential
 - Incompressibility constant: $\kappa = 210 \text{ MeV}$
- MD2: momentum dependent mean-field potential
 - Incompressibility constant: $\kappa = 380 \text{ MeV}$
- JAM cascade mode fails to describe data
- JAM MD2 gives better description to the experimental data for baryons

Y. Nara et al., Phys. Rev. C 61, 024901 (1999)

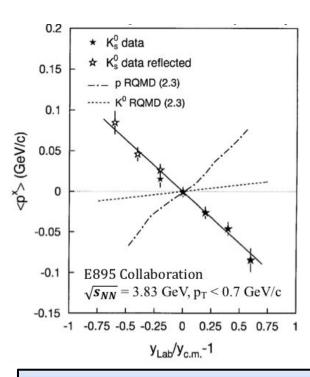
JAM model comparison

- Magnitude of v₁ increases with increasing rapidity
- JAM MD2 with coalescence provides good description of the data

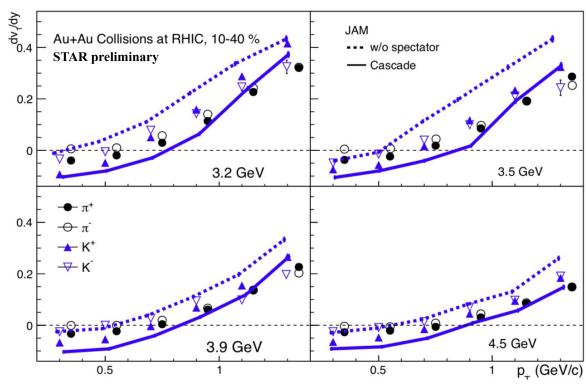
JET AA Microscopic Transportation Model (JAM2)

MD2: momentum dependent mean-field potential

Incompressibility constant: $\kappa = 380$

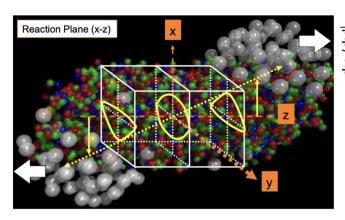

MeV

10

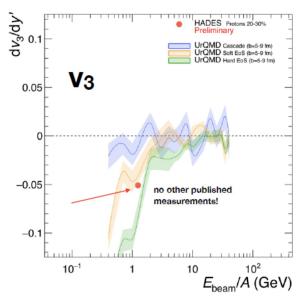


Anti-flow of mesons at low p_T

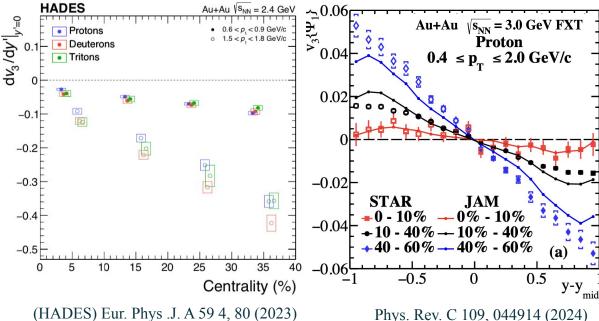
E895: anti-flow of kaon at low p_⊤ ⇒ Kaon potential?


- Negative dv_1/dy at low p_T for mesons \rightarrow Anti-flow at low energies (3.0 4.5 GeV)
- JAM Cascade model → with spectators able to reproduce the anti-flow at low p_T → Kaon potential is not necessary

P. Chung et al. (E895 Collaboration), Phys. Rev. Lett. 85, 940 (2000)

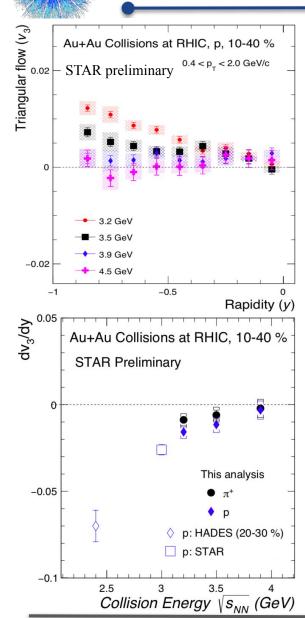


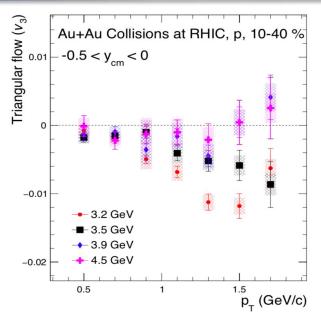
Motivation for $v_3\{\Psi_1\}$ measurement

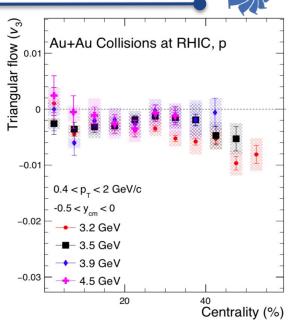


Phys. Rev. C 109, 044914 (2024)

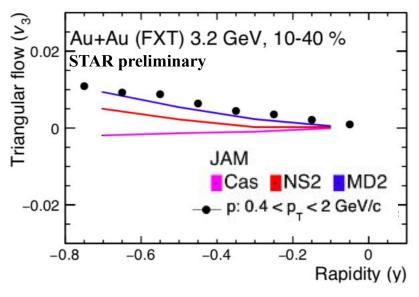
J. Phys. G: Nucl. Part. Phys. 45 085101 (2018)

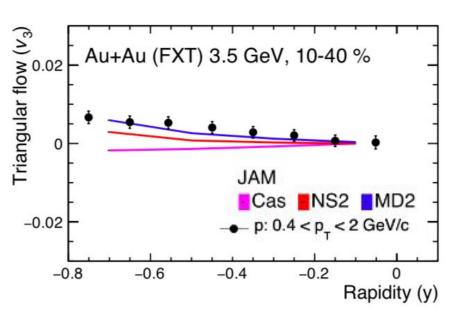


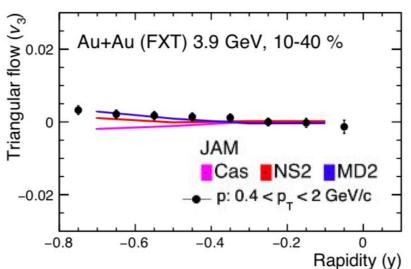

- At high energies, $v_3 \rightarrow$ uncorrelated with the 1st order event plane, contrary to observation at 2.4 GeV by HADES and at 3 GeV by STAR experiment.
- $\mathbf{V}_{3}\{\boldsymbol{\varPsi}_{1}\}$ \rightarrow two key ingredients \Rightarrow collision geometry and potential in a responsive medium



$v_3\{\Psi_1\}$ for proton


- Magnitude of proton $v_3\{\Psi_1\}$ increases with increasing rapidity and p_T .
- $|v_3\{\Psi_1\}|$ increases towards peripheral collisions \implies strong geometric effect
- Increasing collision energy \rightarrow decreasing magnitude of $v_3\{\Psi_1\}$ slope


(HADES) Phys. Rev. Lett. 125, 262301 (2020); (STAR) Phys. Rev. C 109, 044914 (2024)₁₃



JAM model comparison

- JAM cascade mode fails to describe data
- **JAM** model with **mean-field** describes the data \longrightarrow **Nuclear potential** is essential for the development of $|v_3\{\Psi_1\}|$

Summary

- \Box The magnitude of the v_1 slope decreases with increasing collision energy
- □ $dv_1/dy(\pi^+)$ is negative whereas $dv_1/dy(\pi^-)$ is positive $(\sqrt{s_{NN}} = 3.2 4.5 \text{ GeV}) \Rightarrow \text{Spectator}$ shadowing and Coulomb interactions
- \Box dv₁/dy for both net-kaon and net-proton shows a minimum \Rightarrow Connection with changes in EoS is to be explored
- \square Approximate mass no. scaling is observed in the v_1 slope for light nuclei \Rightarrow Nucleon coalescence
- JAM mean-field with hard EoS gives a better description to the experimental data for identified hadrons as well as light nuclei (with coalescence afterburner)
- JAM-Cascade model with spectators able to reproduce the kaon anti-flow at low $p_T \Rightarrow Kaon potential$ is not a necessary condition
- Magnitude of $v_3\{\Psi_1\}$ decreases with increasing collision energy.
- ♦ $|v_3\{\Psi_1\}|$ increases in magnitude towards peripheral collisions **Strong geometric effect**
- **♦ JAM** model with **mean-field** describes the data **→ Nuclear potential** is essential for the development of $|v_3\{\Psi_1\}|$

Thank you for your attention!!

