Hot Quarks 2016, September 12-17 – South Padre Island, Texas

Latest results on Y production in heavy ion collisions from the STAR experiment

Róbert Vértesi for the STAR collaboration

vertesi.robert@wigner.mta.hu

Nuclear Physics Institute Academy of Sciences of the Czech Republic Prague/Řež

Quarkonia in the sQGP

Debye screening of heavy quark potential

 Quarkonia are expected to dissociate

T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986)

 $0 < T < T_c$

 $T_{C} < T$

Charmonia ($c\bar{c}$): J/ Ψ , Ψ ', χ_{c}

Bottomonia (bb): Υ(1S), Υ(2S), Υ(3S), χ_B

-Illustration: A. Rothkopf

Quarkonia in the sQGP

Debye screening of heavy quark potential
 → Quarkonia are expected to dissociate

T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986)

Illustration: A. Rothkopf

Charmonia ($c\bar{c}$): J/ Ψ , Ψ ', χ_c

Bottomonia (bb): Υ(1S), Υ(2S), Υ(3S), χ_B

 Sequential melting: Different states dissociate at different temperatures Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

Quarkonia may serve as sQGP thermometer

Cold nuclear matter effects

- Nuclear shadowing (PDF modification in the nucleus)
- Initial state energy loss
- Co-mover absorption

Cold nuclear matter effects

- Nuclear shadowing (PDF modification in the nucleus)
- Initial state energy loss
- Co-mover absorption

Hot/dense medium effects

- Dissociation of quarkonia
- Coalescence of uncorrelated charm and bottom pairs

ALICE : PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063 PHENIX: PRL 98 (2007) 232301 Transport models at RHIC I: PLB 678 (2009) 72 II. PRC 82 (2010) 064905 Transport models at LHC I: PRC 89 (2014) 054911 II. NPA 859 (2011) 114

Cold nuclear matter effects

- Nuclear shadowing (PDF modification in the nucleus)
- Initial state energy loss
- Co-mover absorption

Hot/dense medium effects

- Dissociation of quarkonia
- Coalescence of uncorrelated charm and bottom pairs
- Feed-down
 - χ_c , ψ ', B-meson decay to J/ψ

ALICE : PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063 PHENIX: PRL 98 (2007) 232301 Transport models at RHIC I: PLB 678 (2009) 72 II. PRC 82 (2010) 064905 Transport models at LHC I: PRC 89 (2014) 054911 II. NPA 859 (2011) 114

Cold nuclear matter effects

- Nuclear shadowing (PDF modification in the nucleus)
- Initial state energy loss
- Co-mover absorption

Hot/dense medium effects

- Dissociation of quarkonia
- Coalescence of uncorrelated charm and bottom pairs
- Feed-down
 - χ_c , ψ ', B-meson decay to J/ψ

Υ production at RHIC

- Y co-mover absorption is negligible at RHIC energies
 - Υ (1S) is tightly bound, larger kinematic threshold.
 - x-section is 5-10 times smaller than for J/ψ (σ~0.2 mb) Lin & Ko, PLB 503 (2001) 104
- Υ recombination \rightarrow negligible at RHIC:
 - $\sigma_{cc} \sim 800 \ \mu b >> \sigma_{bb} \sim (1-2) \ \mu b$

Andronic, Braun-Munzinger, Redlich & Stachel, NPA 789 (2007) 334.

Y excited states: test sequential suppression

Υ production at RHIC

- Y co-mover absorption is negligible at RHIC energies
 - Υ (1S) is tightly bound, larger kinematic threshold.
 - x-section is 5-10 times smaller than for J/ψ (σ~0.2 mb) Lin & Ko, PLB 503 (2001) 104
- Υ recombination \rightarrow negligible at RHIC:
 - $\sigma_{cc} \sim 800 \ \mu b >> \sigma_{bb} \sim (1-2) \ \mu b$

Andronic, Braun-Munzinger, Redlich & Stachel, NPA 789 (2007) 334.

Y excited states: test sequential suppression

 Υ states provide a cleaner probe at RHIC

- Y measurements : a challenge
 - Low production rate
 - Large acceptance, specific trigger needed
 - Feed-down still present: χ_b , $\Upsilon(2S)$, $\Upsilon(3S)$ to $\Upsilon(1S)$...

Measurements by collision system

- p+p pQCD benchmark and reference for nuclear effects
 √s = 200 GeV (preliminary 500 GeV)
- d+Au (p+Au) cold nuclear matter effects √s_{NN} = 200 GeV
- A+A hot nuclear matter effects
 - Au+Au $\sqrt{s_{_{\rm NN}}}$ =200 GeV
 - U + U $\sqrt{s_{_{NN}}}$ =193 GeV

Measurements by collision system

- p+p pQCD benchmark and reference for nuclear effects
 √s = 200 GeV (preliminary 500 GeV)
- d+Au (p+Au) cold nuclear matter effects √s_{NN} = 200 GeV
- A+A hot nuclear matter effects


```
Hot Quarks '16
```

Measurements by collision system

- p+p pQCD benchmark and reference for nuclear effects
 √s = 200 GeV (preliminary 500 GeV)
- d+Au (p+Au) cold nuclear matter effects √s_{NN} = 200 GeV
- A+A hot nuclear matter effects

The STAR experiment

Full azimuthal coverage at mid-rapidity

Reconstruction in the $\Upsilon -> e^+e^-$ channel

A central A+A collision event in STAR

Reconstruction in the $\Upsilon -> e^+e^-$ channel

A central A+A collision event in STAR

$\Upsilon \rightarrow e^+e^-$ (BR ~ 2%)

- Large invariant mass (m_{ee}~10 GeV/c²)
- Back-to-back electron-positron pair
- Rather energetic electrons (typically >3 GeV)

Reconstruction in the $\Upsilon -> e^+e^-$ channel

A central A+A collision event in STAR (U+U 193 GeV) 35 1. Trigger on arXiv:1608.06487 30 ● N₊_ energetic hits \bigcirc N₊₊+N₋₋ 25 in the **BEMC** --- combinatorial bg counts 20 2. Find electron tracks in the TPC 15 10 3. Match BEMC clusters and 5 **TPC tracks** 8.5 9.5 10 10.5 11 11.5 4. Further m_{ee} (GeV/c²) electron ID in the **BEMC** signal+background fit

- $\Upsilon \rightarrow e^+e^-$ (BR ~ 2%)
 - Large invariant mass (m_{ee}~10 GeV/c²)
 - Back-to-back electron-positron pair
 - Rather energetic electrons (typically >3 GeV)

Reconstructed invariant mass

Yield determined using a simultaneous

- Signal: Υ(1S)+Υ(2S)+Υ(3S) Crystal ball functions including Bremsstrahlung tail
- Background: $b\overline{b} \rightarrow e^+e^-X$ and Drell-Yan processes, random correlation

R_{AA}^{γ} in Au+Au and U+U

CMS, PRL 109 (2012) 222301

$R_{AA}{}^{\Upsilon}$ in Au+Au and U+U

Υ(1S+2S+3S)

Peripheral collisions:

no significant suppression observed

R_{AA}^{γ} in Au+Au and U+U

Υ**(1S+2S+3S)**

Peripheral collisions:

no significant suppression observed

Central collisions:

- significant Υ suppression
- suppression observed at LHC and RHIC are comparable at high N_{part}

Υ**(1S)**

R_{AA}^{γ} in Au+Au and U+U

Υ(1S+2S+3S)

Peripheral collisions:

no significant suppression observed

Central collisions:

- significant Υ suppression
- suppression observed at LHC and RHIC are comparable at high N_{part}

Υ(1S) – Central collisions:

• Combined Au+Au and U+U data: $R_{\rm AA}^{\Upsilon(1S)} = 0.63 \pm 0.16 \pm 0.09$ Suppression significant,

but not complete

R_{AA}^{γ} in Au+Au and U+U

Υ(1S+2S+3S)

Peripheral collisions:

no significant suppression observed

Central collisions:

- significant Υ suppression
- suppression observed at LHC and RHIC are comparable at high N_{part}

Υ(1S) – Central collisions:

• Combined Au+Au and U+U data: $R_{\rm AA}^{\Upsilon(1S)} = 0.63 \pm 0.16 \pm 0.09$ Suppression significant, but not complete

New U+U data confirms and extends Au+Au trend

Strickland, Bazov,

Nucl.Phys.A 879, 25 (2012)

- No CNM effects, 428<T<443 MeV
- Potential model 'B' based on heavy quark internal energy
- Potential model 'A' based on heavy quark free energy (disfavored)

Liu, Chen, Xu, Zhuang,

Phys.Lett.B 697, 32 (2011)

- Potential model, no CNM effects
- T=340 MeV, only excited states dissociate

Emerick, Zhao, Rapp,

Eur.Phys.J A48, 72 (2012)

- CNM effects included
- Strong binding scenario

R_{AA}^{γ} : model comparison

Strickland, Bazov,

Nucl.Phys.A 879, 25 (2012)

- No CNM effects, 428<T<443 MeV
- Potential model 'B' based on heavy quark internal energy
- Potential model 'A' based on heavy quark free energy (disfavored)

Liu, Chen, Xu, Zhuang,

Phys.Lett.B 697, 32 (2011)

- Potential model, no CNM effects
- T=340 MeV, only excited states dissociate

Emerick, Zhao, Rapp,

Eur.Phys.J A48, 72 (2012)

- CNM effects included
- Strong binding scenario

Suppression indicates Y melting in a deconfined medium <u>However</u>: CNM effects have to be understood! => 2015 p+Au data

Excited Y states in Au+Au and U+U

Au+Au:

- Excited states Υ(2S) and Υ(3S) consistent with complete melting
- Central $\Upsilon(1S)$ suppression similar to high-p_T J/ ψ

Excited Y states in Au+Au and U+U

Au+Au:

- Excited states Υ(2S) and Υ(3S) consistent with complete melting
- Central $\Upsilon(1S)$ suppression similar to high-p_T J/ ψ

U+U:

- Consistent with Au+Au
- Hint of an $\Upsilon(2S+3S)$ signal

Excited Y states in Au+Au and U+U

Au+Au:

- Excited states Υ(2S) and Υ(3S) consistent with complete melting
- Central $\Upsilon(1S)$ suppression similar to high-p_T J/ ψ

U+U:

- Consistent with Au+Au
- Hint of an $\Upsilon(2S+3S)$ signal

 Υ suppression pattern supports sequential melting

RHIC vs. LHC: Sequential melting

Similar suppression of $\Upsilon(1S)$ at central events at RHIC $\sqrt{s_{NN}}=200$ GeV Au+Au and LHC $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb collisions

$\Upsilon \rightarrow \mu^+ \mu^-$ analysis with the MTD

MTD (from 2014): Outermost, gas detector

- Physics goal: Precision measurement of heavy quarkonia through the muon channel
- Acceptance: 45% in azimuth, |y|<0.5

$\Upsilon \rightarrow \mu^+ \mu^-$ analysis with the MTD

MTD (from 2014): Outermost, gas detector

- Physics goal: Precision measurement of heavy quarkonia through the muon channel
- Acceptance: 45% in azimuth, |y|<0.5

Reconstructed invariant mass (Au+Au 200 GeV)

- Separation of Υ(2S+3S) and Υ(1S)
 - Challenging in dielectron channel due to Bremsstrahlung
- Indication of an $\Upsilon(2S+3S)$ signal

Excited to ground state ratio

- 2014 Au+Au data from the dimuon channel
 - Compared to p+p (PDG) and LHC Pb+Pb

CMS: PRL 109 (2012) 222301, JHEP 04 (2014) 103

Excited to ground state ratio

- 2014 Au+Au data from the dimuon channel
 - Compared to p+p (PDG) and LHC Pb+Pb

CMS: PRL 109 (2012) 222301, JHEP 04 (2014) 103

Hint of less $\Upsilon(2S+3S)$ dissociation at RHIC than at LHC

Summary

Significant suppression of Υ states in central A+A collisions

- $\Upsilon(1S)$ at RHIC is similarly suppressed as high-p_T J/ ψ
- $\Upsilon(2S)$ and $\Upsilon(3S)$ suppression is stronger than $\Upsilon(1S)$ \rightarrow clear signal of melting in a deconfined medium
- Υ suppression in most central collisions similar to LHC

U+U measurements: extend the Au+Au observations

- Similar patterns in $\Upsilon(1S)$ and $\Upsilon(1S+2S+3S)$
- Suppression of central Y(1S) confirmed

Au+Au measurements with MTD (preliminary)

- Indication of excited states in 0-80% centrality data
- Hint of less $\Upsilon(2S+3S)$ dissociation at RHIC than at LHC

Thank You!

÷¢

L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, D. M. Anderson, R. Aoyama, A. Aparin, D. Arkhipkin, E. C. Aschenauer, M. U. Ashraf, A. Attri, G. S. Averichev, X. Bai, V. Bairathi, R. Bellwied, A. Bhasin, A. K. Bhati, P. Bhattarai, J. Bielcik, J. Bielcikova, L. C. Bland, I. G. Bordyuzhin, J. Bouchet, J. D. Brandenburg, A. V. Brandin, D. Brown, I. Bunzarov, J. Butterworth, H. Caines, M. Calderón de la Barca Sánchez, J. M. Campbell, D. Cebra, I. Chakaberia, P. Chaloupka, Z. Chang, A. Chatterjee, S. Chattopadhyay, X. Chen, J. H. Chen, J. Cheng, M. Cherney, W. Christie, G. Contin, H. J. Crawford, S. Das, L. C. De Silva, R. R. Debbe, T. G. Dedovich, J. Deng, A. A. Derevschikov, L. Didenko, C. Dilks, X. Dong, J. L. Drachenberg, J. E. Draper, C. M. Du, L. E. Dunkelberger, J. C. Dunlop, L. G. Efimov, J. Engelage, G. Eppley, R. Esha, S. Esumi, O. Evdokimov, J. Ewigleben, O. Eyser, R. Fatemi, S. Fazio, P. Federic, J. Fedorisin, Z. Feng, P. Filip, Y. Fisyak, C. E. Flores, L. Fulek, C. A. Gagliardi, D. Garand, F. Geurts, A. Gibson, M. Girard, L. Greiner, D. Grosnick, D. S. Gunarathne, Y. Guo, S. Gupta, A. Gupta, W. Guryn, A. I. Hamad, A. Hamed, R. Haque, J. W. Harris, L. He, S. Heppelmann, S. Heppelmann, A. Hirsch, G. W. Hoffmann, S. Horvat, H. Z. Huang, B. Huang, X. Huang, T. Huang, P. Huck, T. J. Humanic, G. Igo, W. W. Jacobs, A. Jentsch, J. Jia, K. Jiang, S. Jowzaee, E. G. Judd, S. Kabana, D. Kalinkin, K. Kang, K. Kauder, H. W. Ke, D. Keane, A. Kechechyan, Z. Khan, D. P. Kikola, I. Kisel, A. Kisiel, L. Kochenda, D. D. Koetke, L. K. Kosarzewski, A. F. Kraishan, P. Kravtsov, K. Krueger, L. Kumar, M. A. C. Lamont, J. M. Landgraf, K. D. Landry, J. Lauret, A. Lebedev, R. Lednicky, J. H. Lee, X. Li, W. Li, Y. Li, X. Li, C. Li, T. Lin, M. A. Lisa, F. Liu, Y. Liu, T. Ljubicic, W. J. Llope, M. Lomnitz, R. S. Longacre, X. Luo, S. Luo, R. Ma, G. L. Ma, L. Ma, Y. G. Ma, N. Magdy, R. Majka, A. Manion, S. Margetis, C. Markert, H. S. Matis, D. McDonald, S. McKinzie, K. Meehan, J. C. Mei, Z. W. Miller, N. G. Minaev, S. Mioduszewski, D. Mishra, B. Mohanty, M. M. Mondal, D. A. Morozov, M. K. Mustafa, Md. Nasim, T. K. Nayak, G. Nigmatkulov, T. Niida, L. V. Nogach, T. Nonaka, J. Novak, S. B. Nurushev, G. Odyniec, A. Ogawa, K. Oh, V. A. Okorokov, D. Olvitt Jr., B. S. Page, R. Pak, Y. X. Pan, Y. Pandit, Y. Panebratsev, B. Pawlik, H. Pei, C. Perkins, P. Pile, J. Pluta, K. Poniatowska, J. Porter, M. Posik, A. M. Poskanzer, N. K. Pruthi, M. Przybycien, J. Putschke, H. Qiu, A. Quintero, S. Ramachandran, R. L. Ray, R. Reed, M. J. Rehbein, H. G. Ritter, J. B. Roberts, O. V. Rogachevskiy, J. L. Romero, J. D. Roth, L. Ruan, J. Rusnak, O. Rusnakova, N. R. Sahoo, P. K. Sahu, I. Sakrejda, S. Salur, J. Sandweiss, J. Schambach, R. P. Scharenberg, A. M. Schmah, W. B. Schmidke, N. Schmitz, J. Seger, P. Seyboth, N. Shah, E. Shahaliev, P. V. Shanmuganathan, M. Shao, A. Sharma, M. K. Sharma, B. Sharma, W. Q. Shen, Z. Shi, S. S. Shi, Q. Y. Shou, E. P. Sichtermann, R. Sikora, M. Simko, S. Singha, M. J. Skoby, D. Smirnov, N. Smirnov, W. Solyst, L. Song, P. Sorensen, H. M. Spinka, B. Srivastava, T. D. S. Stanislaus, M. Stepanov, R. Stock, M. Strikhanov, B. Stringfellow, T. Sugiura, M. Sumbera, B. Summa, Y. Sun, X. M. Sun, Z. Sun, B. Surrow, D. N. Svirida, Z. Tang, A. H. Tang, T. Tarnowsky, A. Tawfik, J. Thäder, J. H. Thomas, A. R. Timmins, D. Tlusty, T. Todoroki, M. Tokarev, S. Trentalange, R. E. Tribble, P. Tribedy, S. K. Tripathy, O. D. Tsai, T. Ullrich, D. G. Underwood, I. Upsal, G. Van Buren, G. van Nieuwenhuizen, A. N. Vasiliev, R. Vertesi, F. Videbaek, S. Vokal, S. A. Voloshin, A. Vossen, Y. Wang, J. S. Wang, Y. Wang, G. Wang, F. Wang, G. Webb, J. C. Webb, L. Wen, G. D. Westfall, H. Wieman, S. W. Wissink, R. Witt, Y. Wu, Z. G. Xiao, G. Xie, W. Xie, K. Xin, H. Xu, Q. H. Xu, N. Xu, Z. Xu, J. Xu, Y. F. Xu, C. Yang, Y. Yang, S. Yang, Q. Yang, Y. Yang, Y. Yang, Z. Ye, Z. Ye, L. Yi, K. Yip, I.-K. Yoo, N. Yu, H. Zbroszczyk, W. Zha, S. Zhang, S. Zhang, J. Zhang, J. Zhang, X. P. Zhang, Y. Zhang, J. B. Zhang, Z. Zhang, J. Zhao, C. Zhong, L. Zhou, X. Zhu, Y. Zoulkarneeva, M. Zyzak

STAR Collaboration

$J/\psi R_{AA} - data vs. models in details$

J/ψ RAA for pT>0 GeV/c: RHIC is smaller than LHC

-> more recombination at LHC

J/ψ RAA for pT>5 GeV/c : LHC is smaller than RHIC

-> stronger dissociation at LHC

Transport models with dissociation and recombination qualitatively describe data

Data: ALICE : PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063 PHENIX: PRL 98 (2007) 232301

Transport models at RHIC I: PLB 678 (2009) 72 II. PRC 82 (2010) 064905 Transport models at LHC I: PRC 89 (2014) 054911 II. NPA 859 (2011) 114

 $\Upsilon R_{dAu} - CNM$ effects

0.5

2

10

10²

Mass Number (A)

Analysis (BEMC)

Trigger

• L0: 'High tower trigger' saves events with high energy hit in the Barrel Electromagnetic Calorimeter (BEMC) tower

Electron tracks

• Fractional energy loss dE/dx , -1.2<n σ_e <3

Matching and calorimeter ID

- Clusterize energy in the BEMC (3 adjacent towers with most of the energy deposit)
- Project TPC tracks onto clusters to match them: $\Delta R_{match} = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} < 0.04$
- Cluster energy matches track momentum: 0.75<*E/p*<1.4 (*U*+*U*)
- Energy deposit is compact, mostly in a single tower: triggered e[±]: *E*_{tower}/*E*>0.7, associated e[±]: *E*_{tower}/*E*>0.5 (*U*+*U*)

Acceptance and efficiency, U+U

- 15M high-tower-triggered U+U 193 GeV events (263 µb⁻¹)
- Divided into 3 centrality bins 0–10 %, 10–30 %, 30–60 %
- or... 3 bins in p_T^Υ:
 0–2 GeV/c, 2–4 GeV/c, 4–10 GeV/c
- Total acceptance & efficiency for $\Upsilon \rightarrow e^+e^-$ reconstruction: ~ 2-3%

Υ x-section and p_T-spectrum in U+U

In addition: p+p reference syst.

CMS ΥR_{AA} (Run2 preliminary)

- Improvements since Run1
 - pp reference x 20
 - Bigger, more precise PbPb sample
 - Reduced stat. uncertainties
- R_{AA}(y) and R_{AA}(p_T): The suppression is constant over the analysis range

40

Rapp WBS & SBS

FIG. 2: Bottomonium lifetimes in the QGP for the two binding scenarios defined in the text; left panel: WBS with quasifree dissociation; right: SBS with gluo-dissociation; solid lines: Υ , dashed lines: Υ' , dotted lines: χ_b .

Emerick, Zhao, Rapp, Eur. Phys. J A48, 72 (2012)