



## Measurements of jet and soft activity in $s_{\rm NN} = 200$ GeV p+Au collisions at STAR







- Veronica Verkest for the STAR Collaboration
- veronica.verkest@wayne.edu

## Introduction

**PHENIX** d+Au,  $\sqrt{s_{NN}} = 200 \text{ GeV}$ anti- $k_t$ , R=0.3 jet





Veronica Verkest

- Jets commonly used to probe for existence and properties of quark-gluon plasma (QGP)
- Unexpected observation by ATLAS and PHENIX of jet modification in small systems (such as p+A), thought too small of a system to form QGP
  - Effect of hard scattering (jet) on soft particle production?
    - Specifically, event activity (EA) at backward rapidity and underlying event (UE) at midrapidity (used to define centrality)

Jet Suppression in ATLAS: Phys. Let. B. 748 https://doi.org/10.1016/j.physletb.2015.07.023



# Experiment

Barrel Electromagnetic Calorimeter (BEMC)

- $0.2 \le E_{\rm T} \le 30.0 \, {\rm GeV}$
- $\gamma, \pi^0, e^{\pm}, \dots |\eta| < 1,$
- $0 < \phi < 2\pi$

Time Projection Chamber (TPC)

- Charged tracks,  $|\eta| < 1$
- $0.2 \le p_{\rm T} \le 30.0 \, {\rm GeV/c}$
- $0 < \phi < 2\pi$

STAR

Beam Beam Counter (BBC)

- Scintillator detector
- East inner BBC:  $-5.2 < \eta < -3.3$







DNP 2022



- in the Au-going direction ( $-5.2 < \eta < -3.3$ )
- Centrality not easily defined in p+Au collisions; use backward event activity (EA) as a • proxy for centrality (related to impact parameter)
- EA percentiles determined by iBBCEsum distribution of min-bias p+Au events





# **Event activity**



Event activity (EA) defined by the signal sum (iBBCEsum) of the inner tiles of the BBC





- Relate theory to experiment: reconstruct kinematics of hard scattered partons from final state particles in the detector
- Hard scattering: large momentum transfer (Q<sup>2</sup>)
- Jets clustered using the anti- $k_T$  algorithm with resolution parameter, R=0.4



Veronica Verkest ~

# Jet finding

Jet: highly-energetic spray of collimated hadrons resulting from a hard scattering of partons; small cross section





## Jets and UE measurement method

- Trigger: BEMC tower with transverse energy  $E_{\rm T} > 5.4$  GeV • Must be within the leading jet radius or the leading jet must be in the trigger recoil region:
- $|\phi_{\text{lead}} \phi_{\text{trig}}| < R \text{ or } |\phi_{\text{lead}} \phi_{\text{trig}}| > \pi R$  $\phi_{\mathsf{lead}}$
- R = 0.4 anti- $k_{\rm T}$  jets
- Jet requirements:  $|\eta_{\text{lead}}| < 1 R$  and  $10 < p_{\text{T,lead}}^{\text{reco}} \leq 30$  GeV/c

Charged tracks:

 $0.2 \le p_{\mathrm{T}} \le 30.0 \; \mathrm{GeV/c}$ 

Neutral towers:  $0.2 \le E_{\rm T} \le 30.0 \, {\rm GeV}$ 



Veronica Verkest ~









## Jets and UE measurement method

## UE is defined by charged particle production in $1 < |\phi_{\text{lead}} - \phi_{\text{UE}}| < \pi - 1$





## Jet and UE correlation





Veronica Verkest

DNP 2022

~

- UE charged particle multiplicity is higher in events with a larger EA as measured by the Au-going BBC ( $-5.2 < \eta < -3.3$ )
- UE is larger in the Au-going direction, and does not have a significant dependence on leading jet  $p_{\rm T}$



7

# Activity-dependent jet yields





Veronica Verkest DNP 2022  $\sim$ 



 Anti-correlation between EA<sub>BBC</sub> (iBBCEsum) and leading jet  $p_{\rm T}$ Events binned by higher (lower) jet  $p_{\rm T}$ have a lower (higher) average EA<sub>BBC</sub>, naively classified as more peripheral (central)



# Activity-dependent jet yields



**STAR** 

Veronica Verkest

- Yield of semi-inclusive high- $p_{\rm T}$  jets per charged hadron trigger suppressed in high EA<sub>BBC</sub> events relative to low EA<sub>BBC</sub> events
  - Similarly for  $EA_{UE}$  (not shown), • where  $EA_{UE}$  is the charged UE  $p_{T}$ density at mid-rapidity ( $|\eta| < 1$ )
- The suppression is comparable for jets on the trigger and recoil side



DNP 2022





No significant change of the jet mass between *p+p* and central *p+Au* [Phys. Rev. D 104, 052007] No signs of medium-induced modification to jet mass in this data

> Veronica Verkest ~ DNP 2022









## Conclusion

- EA correlated with UE multiplicity and anti-correlated with high- $Q^2$  jets
  - Dependence of soft particle production (EA) on the initial hard jet scattering
- Semi-inclusive jet spectra suppressed at high EA<sub>BBC</sub> for both trigger and recoil jet
- Inconsistent with naive jet quenching picture
- Jet mass in central *p*+Au consistent with *pp* 
  - No signs of medium-induced jet mass modification in the measured kinematic range





p



Veronica Verkest

Measurements indicate EA vs.  $Q^2$  correlations from early time effects (over large rapidities) Jet quenching disfavored by STAR jet measurements in p+Au collisions







Veronica Verkest ~ DNP 2022

Backup

# PHENIX Rd+Au erratum





Veronica Verkest ~ DNP 2022

- An erratum to the PHENIX R<sub>d+Au</sub> is being prepared
- The analysis was re-done after removing noisy towers
- R<sub>d+Au</sub> no longer shows jet suppression in central events, but still shows enhancement in peripheral events

Lajoie https://moriond.in2p3.fr/2021/QCD/



# Jet suppression in ATLAS p+Pb





Veronica Verkest DNP 2022  $\sim$ 

 $p_{\rm T} \times \cosh\left(\langle y^* \rangle\right) \approx E$ 

- Significant jet suppression of central events is seen in the forward and mid-rapidity regions
- This suppression indicates dependence of the jet production on initial kinematics, such as the longitudinal momentum fraction of the hard-scattered parton

Phys. Let. B. 748 https://doi.org/10.1016/j.physletb.2015.07.023





# Jet mass as a function of EA





Veronica Verkest ~ DNP 2022

 $M = \sqrt{E^2 - \mathbf{p}^2}$ 

- No significant change of the jet mass with EA
  - No signs of mediuminduced modification to jet mass

Phys. Rev. D 104, 052007





# Activity-dependent jet yields



• Yield of semi-inclusive high- $p_{\rm T}$  jets per charged hadron trigger suppressed in high EAUE events relative to low EAUE events, where  $EA_{UE}$  is the charged UE  $p_{\rm T}$  density at mid-rapidity ( $|\eta| < 1$ )

- Similarly for EA<sub>BBC</sub> (not shown)
- The suppression is comparable for jets on the trigger and recoil side



Veronica Verkest ~ DNP 2022

