Recent Results on W Boson Production in Polarized Proton Collisions at STAR Justin Stevens for the STAR Collaboration APS 2013

Proton Spin Puzzle

DSSV Global Analysis

Integral of quark polarization is well measured in DIS to be ~30%, some info on decomposition from SIDIS but sea not well constrained

$$\Delta G = \int \Delta g\left(x\right) dx$$

First experimental evidence of non-zero ∆g from 2009 RHIC data (previous talks)

Flavor Asymmetry of the Sea

Unpolarized Flavor Asymmetry:

- Quantitative calculation of Pauli blocking does not explain d/u ratio
- * Non-perturbative processes may be needed in generating the sea
- * E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.

PRD 64, 052002 (2001)

Polarized Flavor Asymmetry:

- * Valence u and d distributions are well determined from DIS
- Polarized flavor asymmetry x(Δū Δd̄)
 could help differentiate models
- SIDIS results depend on FFs

$$u + \bar{d} \to W^+ \to e^+ + \nu$$

 $d + \bar{u} \to W^- \to e^- + \bar{\nu}$

- Ws couple directly to the quarks and antiquarks of interest
- Detect Ws through e+/e- decay channels
- V-A coupling of the weak interaction
 leads to perfect spin separation

Measure parity-violating single-spin asymmetry: $A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$ (Helicity flip in one beam while averaging over the other)

$$A_L^{W-} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}$$

$$A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

Expectations for WAL

$$A_L^{W-} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)} \qquad A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

- Large parity-violating asymmetries expected
- Simplified interpretation at forward and backward rapidity

Previous STAR Measurements

 2009 was a very successful first 500 GeV physics run
 2012 increase in FOM = P²L of an order of magnitude!

What do W decays look like?

Di-jet Background Event

- Several tracks pointing to EM energy deposit in several towers
- Vector p_T sum is balanced by opposite jet, "missing energy" is small

$W \rightarrow e + v$ Candidate Event

- Isolated track pointed to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

Mid-rapidity Background Estimation

W Signal

"Jacobian Peak"

Background Estimation

- # Electroweak
 - * Z \rightarrow ee MC
 - * $W \rightarrow \tau v MC$
- Second EEMC
- * Data-driven QCD

STAR 2012 W A_L(η)

STAR 2012 W A_L(η)

 A_L(W+) is consistent with theoretical predictions using the DSSV polarized PDFs

STAR 2012 W A_L(η)

 * A_L(W-) is systematically larger than the DSSV predictions

- The enhancement at η_e<0,
 in particular, is sensitive to
 the Δū polarized antiquark
 distribution
- A_L(W+) is consistent with theoretical predictions using the DSSV polarized PDFs

STAR 2012 W A_L(η)

 * A_L(W-) is systematically larger than the DSSV predictions

- The enhancement at η_e<0,
 in particular, is sensitive to
 the Δū polarized antiquark
 distribution
- A_L(W+) is consistent with theoretical predictions using the DSSV polarized PDFs
- * The systematic uncertainties for A_L are well under control for $|\eta_e| < 1.4$

DSSV++ Global Analysis

- DSSV++ is a new preliminary global analysis from the DSSV group that includes RHIC 2009 A_{LL} data and STAR 2012 W A_L data
- STAR Preliminary Run 2012 A, \vec{p} +p $\rightarrow W^{\pm}$ $e^{\pm} + v$ √s=510 GeV $25 < E_{\tau}^{e} < 50 \text{ GeV}$ 0.5 W Rel lumi syst W⁺ -0.5 DSSV08 CHE NLO SV08 L0 with $\Delta \gamma^2 = 1$ pdf error nol scale un rtainty not sh -1 0 2 -2 1

lepton η

* Significant shift in $\Delta \overline{u}$ due to A_L W-

$Z \rightarrow e^+e^-$ Candidate

Reconstruct initial state kinematics at leading order:

$$x_{1(2)} = \frac{M_{ee}}{\sqrt{s}} e^{\pm y_Z}$$

STAR 2012 Z AL

STAR Preliminary Run 2012

$Z \rightarrow e^+e^-$ Candidate

Reconstruct initial state kinematics at leading order:

$$x_{1(2)} = \frac{M_{ee}}{\sqrt{s}} e^{\pm y_Z}$$

Summary

- * The production of W bosons in polarized p+p collisions provides a new means of studying the spin and flavor asymmetries of the proton sea quark distributions
- * STAR has measured the parityviolating single-spin asymmetry A_{L} for $|\eta_{e}| < 1.4$ from 2012 data, providing the first detailed look at the asymmetry's η_{e} dependence
- A_L for Z/χ^{*} production was also measured, and is consistent with the theoretical predictions

Backup

Parity-Violating Asymmetry: AL

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

- V-A coupling of the weak interaction
 leads to perfect spin separation
- Only LH quarks and RH anti-quarks

$$A_L^{W+} \propto \frac{u_+^-(x_1)\bar{d}(x_2) - u_-^-(x_1)\bar{d}(x_2)}{u_+^-(x_1)\bar{d}(x_2) + u_-^-(x_1)\bar{d}(x_2)} = -\frac{\Delta u(x_1)}{u(x_1)}$$

Proton helicity ="+" P

$$d_{+}^{+}(x_1)$$
 V
 $u(x_2)$ l^{+}

Proton helicity ="+"

 $u_{+}(x_1)$

 $\overline{d}(x_2)$

x M

Proton helicity ="-"

$$\overline{d^{\dagger}(x_1)}$$

 $u(x_2)$
 $u(x_2)$

Proton helicity ="--"

 $u \overline{(x_1)}$

 $\overline{d}(x_2)$

₩⁺

$$A_L^{W+} \propto \frac{\bar{d}_+^+(x_1)u(x_2) - \bar{d}_-^+(x_1)u(x_2)}{\bar{d}_+^+(x_1)u(x_2) + \bar{d}_-^+(x_1)u(x_2)} = \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}$$

$$A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

2012 STAR Dataset

W Trigger $FOM = P^2L$

	L (pb ⁻¹)	Р	P ² L (pb ⁻¹)
Run 9	12	0.40	1.9
Run 12	72	0.56	22.6

Note: For Run 12 expect ~10% more statistics with final calibrations

Mid-Rapidity Ws at STAR

- Match p_T > 10 GeV track to BEMC cluster
- Isolation Ratios

- Match p_T > 10 GeV track to BEMC cluster
- Isolation Ratios
- P_T-balance

$$\vec{p_T}^{bal} = \vec{p_T}^e + \sum_{\Delta R > 0.7} \vec{p_T}^{jets}$$

$$P_T$$
-balance $\cos(\phi) = \frac{\vec{p}_T^e \cdot \vec{p}_T^{out}}{|\vec{p}_T^e|}$

Forward Rapidity Ws at STAR

Forward Rapidity Analysis

- ***** Similar concept as mid-rapidity:
 - Which extends to η ~1.4
 to reconstruct high p_T TPC track
 - Use isolation ratios and vector p_T imbalance to reduced QCD background
- Improve background rejection by using the Endcap Shower Maximum Detector

Endcap EM Calorimeter (EEMC)

Forward Rapidity Analysis

- Similar concept as mid-rapidity:
 - Weight Utilize TPC which extends to η ~1.4
 to reconstruct high p_T TPC track
 - We see isolation ratios and vector p_T imbalance to reduced QCD background
- Improve background rejection by using the Endcap Shower Maximum Detector

Endcap EM Calorimeter (EEMC)

2012 data events which satisfy all previous cuts Signal Example Background Example

2012 STAR W Candidate Yields vs n

Mid-rapidity (Barrel) Ws Forward rapidity (Endcap) Ws

Mid-rapidity Charge Separation

W Production at Forward Rapidity

$$x_1 = \frac{M_W}{\sqrt{s}} e^{y_W} \quad x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W}$$

Use lepton rapidity as a surrogate for W rapidity based on W decay kinematics

e⁻⁽⁺⁾ are emitted along (opposite) the W⁻⁽⁺⁾ direction

Probability that polarized proton provides the antiquark

Forward Rapidity W Selection

- Similar to mid-rapidity analysis: *
 - Use high-p_T TPC track as candidate seed *
 - **Isolation** ratios *

Forward Rapidity W Selection

- Jacobian peak less pronounced than at mid-rapidity *
- Different background estimation than mid-rapidity, based on P_T-Balance
 - Select candidates with $25 < E_T < 50$ GeV

34

Forward Rapidity Algorithm Extension

Define Endcap SMD ratio RESMD:

$$R_{ESMD} = \frac{\sum_{i=-3}^{3} E_{i}^{U} + E_{i}^{V}}{\sum_{i=-20}^{20} E_{i}^{U} + E_{i}^{V}} > 0.6$$

Background Example

Run 12 Data

-20

20

Pt-Bal cos((ϕ) (GeV)

0

40

60

QCD MC

Run 12 data events which satisfy all previous cuts

Forward Rapidity Background Estimation

- * Final signal selected by P_T -Balance > 20 GeV
- Raw Signal Yields:
 - ₩ W+:48
 - ₩ W-:48
- * Background Estimation:

	Z→ee	QCD
W+	0.5 ± 0.1	2.0 ± 1.2
W-	0.5 ± 0.1	1.3 ± 0.7

Forward Rapidity Charge Separation

- * Fewer TPC fit points at forward rapidity leads to worsened P_T resolution
 - Expect factor ~2 worse resolution than mid-rapidity
- * Similar procedure as mid-rapidity
 - * E_T/P_T (ie. EMC/TPC) distribution for each charge sign
 - * Estimate wrong sign contamination with Gaussian fit
- * Q+ and Q- peaks are separated by $\sim 3\sigma$
- * After excluding tails, opposite charge sign contamination is less than 1%

NLO CHE Cross Sections

Mid-rapidity Background n Dependence

E_T (GeV)

Barrel: neg_muclustpTbal_wE: Eta3

+ STAR 2012 Data

Data-driven QCD

W-

60

70

E_T (GeV)

= $W \rightarrow e_V MC$

Second EEMC

 $Z \rightarrow ee MC$

 $W \rightarrow \tau \nu MC$

100r

90

80 70

60F

50 40

30⁻

20

10

20

30

40

50

Barrel: pos_muclustpTbal_wE: Eta4

APS 2013

Single Asymmetric n Slice

$$N_{\eta^{STAR}}^{++}/\mathcal{L}^{++} = \mathcal{C}_{\eta^{STAR}} \left[1 + A_{L}(\eta)P_{1}^{L} + A_{L}(-\eta)P_{2}^{L} + A_{LL}(|\eta|)P_{1}^{L}P_{2}^{L} \right] \#1$$

$$N_{\eta^{STAR}}^{+-}/\mathcal{L}^{+-} = \mathcal{C}_{\eta^{STAR}} \left[1 + A_{L}(\eta)P_{1}^{L} - A_{L}(-\eta)P_{2}^{L} - A_{LL}(|\eta|)P_{1}^{L}P_{2}^{L} \right] \#2$$

$$N_{\eta^{STAR}}^{-+}/\mathcal{L}^{-+} = \mathcal{C}_{\eta^{STAR}} \left[1 - A_{L}(\eta)P_{1}^{L} + A_{L}(-\eta)P_{2}^{L} - A_{LL}(|\eta|)P_{1}^{L}P_{2}^{L} \right] \#3$$

$$N_{\eta^{STAR}}^{--}/\mathcal{L}^{--} = \mathcal{C}_{\eta^{STAR}} \left[1 - A_{L}(\eta)P_{1}^{L} - A_{L}(-\eta)P_{2}^{L} + A_{LL}(|\eta|)P_{1}^{L}P_{2}^{L} \right] \#4$$

 $A_{L} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{1}{P} \frac{N_{+}/\mathcal{L}_{+} - N_{-}/\mathcal{L}_{-}}{N_{+}/\mathcal{L}_{+} + N_{-}/\mathcal{L}_{-}}$

Blue beamYellow beampol: $A_L(+\eta)$ pol: $A_L(-\eta)$

A_L for both beams measured from 4 spin dependent yields

A_{LL} IηI

$$egin{aligned} A_L^{sig}(+\eta) &= rac{1+2-3-4}{P_1^L\cdot\Sigma 1\ldots 4} \ A_L^{sig}(-\eta) &= rac{1-2+3-4}{P_2^L\cdot\Sigma 1\ldots 4} \end{aligned}$$

Symmetric Pair of η Slices

8 yields from a symmetric "pair of detectors"

$$\begin{split} N_{\eta^{STAR}}^{++}/\mathcal{L}^{++} &= \mathcal{C}_{\eta^{STAR}} \left[1 + A_{L}(\eta) P_{1}^{L} + A_{L}(-\eta) P_{2}^{L} + A_{LL}(|\eta|) P_{1}^{L} P_{2}^{L} \right] \quad \#1\\ N_{\eta^{STAR}}^{+-}/\mathcal{L}^{+-} &= \mathcal{C}_{\eta^{STAR}} \left[1 + A_{L}(\eta) P_{1}^{L} - A_{L}(-\eta) P_{2}^{L} - A_{LL}(|\eta|) P_{1}^{L} P_{2}^{L} \right] \quad \#2\\ N_{\eta^{STAR}}^{-+}/\mathcal{L}^{-+} &= \mathcal{C}_{\eta^{STAR}} \left[1 - A_{L}(\eta) P_{1}^{L} + A_{L}(-\eta) P_{2}^{L} - A_{LL}(|\eta|) P_{1}^{L} P_{2}^{L} \right] \quad \#3\\ N_{\eta^{STAR}}^{--}/\mathcal{L}^{--} &= \mathcal{C}_{\eta^{STAR}} \left[1 - A_{L}(\eta) P_{1}^{L} - A_{L}(-\eta) P_{2}^{L} + A_{LL}(|\eta|) P_{1}^{L} P_{2}^{L} \right] \quad \#4\\ \end{split}$$

Extract two A_L values from 8 spin dependent yields using 2 polarized beams

$$\begin{split} A_L^{sig}(+\eta) &= \frac{1}{2} \left(\frac{1+2-3-4}{P_1^L \cdot \Sigma 1 \dots 4} + \frac{5-6+7-8}{P_2^L \cdot \Sigma 5 \dots 8} \right) \\ A_L^{sig}(-\eta) &= \frac{1}{2} \left(\frac{1-2+3-4}{P_2^L \cdot \Sigma 1 \dots 4} + \frac{5+6-7-8}{P_1^L \cdot \Sigma 5 \dots 8} \right) \end{split}$$

Note: There is a statistical correlation between symmetric η points with a correlation coefficient -5% for $|\eta| < 1$ and -10% for $|\eta| > 1$

Background Contributions to AL

 $A_L^{sig}(\eta) = f_W(\eta) A_L^W(\eta) + \sum f_{Bkgd}(\eta) A_L^{Bkgd}(\eta)$

$$A_{L}^{W} = \frac{A_{L}^{sig} - \left(f_{EEMC}A_{L}^{EEMC} + f_{Z}A_{L}^{Z} + f_{QCD}A_{L}^{QCD}\right)}{1 - f_{EEMC} - f_{Z} - f_{QCD}} = \frac{A_{L}^{sig} - f_{Z}}{\beta}$$

* The <u>unpolarized background</u> contribution $\underline{\beta}$ effectively dilutes the beam polarization

	η _e < 1	$1 < \eta_e < 1.4$
W+ β	~0.95	~0.95
W- β	~0.9	~0.95

- The <u>polarized background</u> contribution <u>α</u> is estimated using the CHE NLO prediction for A_L^Z from DSSV
 - * These are small corrections to the measured asymmetry with typical values of $|\alpha| < 0.005$

 α

* Compute A_{L} using upper and lower systematic error bound on β and take largest difference from nominal A_{L} as systematic error due to β

Relative Luminosity for Spin States

- * Independent sample of QCD events, which fail E_T^e/E_T^{4x4} isolation cut with $E_T^e < 20$ GeV
- Spin dependent luminosity of four spin states measured to ~1%
- Luminosity monitor for |η|<1
 used for A_L in all η bins

Systematic Uncertainties

- **Beam polarization uncertainty: correlated scale 3.4%**
- ***** Relative luminosity uncertainty: correlated offset ΔA_L = 0.007
 - * Accounts for possible parity-violating asymmetry in QCD events used for luminosity monitor
 - * A_L is consistent with zero for a sample of high-p_T QCD events (invert isolation ratio and P_T-Balance requirements)
 - * Systematic uncertainty estimated as half the statistical error on A_L for this high-p_T QCD sample
- **Background estimation: less than 10% of statistical error**
 - * Uncertainty on unpolarized background contribution β: uncorrelated between points less than 10% of statistical error
 - * Uncertainty on polarized background contribution α: negligible

Comparison to 2009 Result

Correlations in $A_L(\eta)$

- * The same 8 spin dependent yields are used to compute A_L(η+) and A_L(η-) leading to a correlation between pairs of η-symmetric points
- * Correlation coefficient calculated with toy MC to be for various possible input asymmetries
- Find corr = -1.3 * A_L * A_L * P * P
 - * Correlation coefficient ~ -5% for mid-rapidity and -11% for forward rapidity

Asymmetries Separated by Beam W+

More Equations

$$\begin{aligned} \frac{dN(\theta_{e},\phi_{e})}{d\theta_{e} \ d\phi_{e}} &= \mathcal{L} \ \sigma_{0}(\theta_{e}) \ \varepsilon(\theta_{e},\phi_{e}) \ [1 \ +A_{1}^{L}(\theta_{e})P_{1}^{L} + A_{1}^{N}(\theta_{e}) \left(-P_{1x}^{T}\sin(\phi_{e}) + P_{1y}^{T}\cos(\phi_{e})\right) \\ &+ A_{2}^{L}(\pi-\theta_{e})P_{2}^{L} - A_{2}^{N}(\pi-\theta_{e}) \left(-P_{2x}^{T}\sin(\phi_{e}) + P_{2y}^{T}\cos(\phi_{e})\right) \\ &+ A_{LL}(\theta_{e})P_{1}^{L}P_{2}^{L} + o(P_{1}^{T} \cdot P_{1}^{T}) + o(P_{1}^{T} \cdot P_{1}^{T})\cos(2\phi_{e})] \end{aligned}$$

$$\frac{dN^{\pm\pm}}{d\eta^{STAR}} = \mathcal{L}^{\pm\pm} \mathcal{C}_{\eta^{STAR}} \left[1 \pm A_L(\eta) P_1^L \pm A_L(-\eta) P_2^L \pm A_{LL}(|\eta|) P_1^L P_2^L + \mathrm{BG}_{unpol} + \mathrm{BG}_{pol} \right]$$

$$\begin{split} N_{\eta^{STAR}}^{++} / \mathcal{L}^{++} &= \mathcal{C}_{\eta^{STAR}} \left[1 + A_L(\eta) P_1^L + A_L(-\eta) P_2^L + A_{LL}(|\eta|) P_1^L P_2^L \right] & \#1 \\ N_{\eta^{STAR}}^{+-} / \mathcal{L}^{+-} &= \mathcal{C}_{\eta^{STAR}} \left[1 + A_L(\eta) P_1^L - A_L(-\eta) P_2^L - A_{LL}(|\eta|) P_1^L P_2^L \right] & \#2 \\ N_{\eta^{STAR}}^{-+} / \mathcal{L}^{-+} &= \mathcal{C}_{\eta^{STAR}} \left[1 - A_L(\eta) P_1^L + A_L(-\eta) P_2^L - A_{LL}(|\eta|) P_1^L P_2^L \right] & \#3 \\ N_{\eta^{STAR}}^{--} / \mathcal{L}^{--} &= \mathcal{C}_{\eta^{STAR}} \left[1 - A_L(\eta) P_1^L - A_L(-\eta) P_2^L + A_{LL}(|\eta|) P_1^L P_2^L \right] & \#4 \end{split}$$

$$\begin{split} N_{-\eta^{STAR}}^{++} \mathcal{L}^{++} &= \mathcal{C}_{-\eta^{STAR}} \left[1 + A_L(-\eta)P_1^L + A_L(\eta)P_2^L + A_{LL}(|\eta|)P_1^L P_2^L \right] \ \#5 \\ N_{-\eta^{STAR}}^{+-} \mathcal{L}^{+-} &= \mathcal{C}_{-\eta^{STAR}} \left[1 + A_L(-\eta)P_1^L - A_L(\eta)P_2^L - A_{LL}(|\eta|)P_1^L P_2^L \right] \ \#6 \\ N_{-\eta^{STAR}}^{-+} \mathcal{L}^{-+} &= \mathcal{C}_{-\eta^{STAR}} \left[1 - A_L(-\eta)P_1^L + A_L(\eta)P_2^L - A_{LL}(|\eta|)P_1^L P_2^L \right] \ \#7 \\ N_{-\eta^{STAR}}^{--} \mathcal{L}^{--} &= \mathcal{C}_{-\eta^{STAR}} \left[1 - A_L(-\eta)P_1^L - A_L(\eta)P_2^L + A_{LL}(|\eta|)P_1^L P_2^L \right] \ \#8 \end{split}$$

p+p 500 vs 510

* Expect negligible difference in A_{L} from change in \sqrt{s}

* CHE (NLO) curves with DSSV confirm this expectation

Other Theory Input

efficiency relative TPC only shown here

Forward Rapidity: FGT

STAR Run 13 Projections

PAC Recommendation

For Run 13 the PAC recommends the following (in order of priority):

- 1. Running with polarized proton collisions at 500 GeV to provide an integrated luminosity of 750 pb⁻¹ at an average polarization of 55%.
- 2. Depending on the amount of running time remaining after priority #1
 - a. If less than 3 weeks remain, a week of 200 GeV Au+Au collisions.
 - b. If at least 3 weeks of running time remain, 3 weeks of 15 GeV Au+Au collisions.
- 3. 8 days of 62 GeV p+p collisions.
- 4. At the discretion of the ALD, 4 days of low-luminosity running to accomplish the pp2pp goals.

FGT fully installed for Run 13

