

Recent STAR quarkonium study highlights

Wei Zhang (For the STAR Collaboration)

South China Normal University

2nd workshop on advancing the understanding of non-perturbative QCD using energy flow Stony Brook University - November 6-9, 2023

2023/11/09

Introduction

➢ Quarkonia provide good probes of the Quark-Gluon Plasma (QGP)

Dissociation

Credit: Q. Yang

➢ Other effects:

- Regeneration
- Cold nuclear matter effects
- Feed down

Sequential suppression

- > Systematically analyze the J/ ψ R_{AA}
 - p_T, centrality dependence
 - Collision energy and system dependence
 - Binding energy dependence

The Solenoidal Tracker at RHIC

Time Projection Chamber Tracking, momentum and energy loss Acceptance: $|\eta| < 1$; $0 \le \varphi < 2\pi$

Time Of Flight Detector Time of flight, particle identification Acceptance: $|\eta| < 1$; $0 \le \phi < 2\pi$

Barrel ElectroMagnetic Calorimeter e^{\pm} trigger and identification Acceptance: $|\eta| < 1; 0 \le \phi < 2\pi$

Au+Au Collisions at STAR

- ➢ Beam Energy Scan II
 - 10-20 times higher statistics than BES-I
 - Unique opportunity to study the collision energy dependence
- > Collision energy dependence of J/ψ production
 - Au+Au collisions at $\sqrt{s_{NN}} = 14.6, 19.6, 27 \text{ GeV}$
 - Smaller regeneration effect

10⁴

10³

10²

10

Events (M)

Raw J/ ψ Signal

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

- The function used to fit UL-Sign (UL) consists of
 - J/ψ template
 - combinatorial background
 - residual background
- Extracted combinatorial background shape from mixed-event UL-Sign.
- Residual background parameterized using a firstorder polynomial.

2023/11/09

Inclusive J/ ψ Invariant Yields

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

Inclusive J/ ψ invariant yields as a function of p_T at mid-rapidity (|y| < 1) in Au+Au collisions at $\sqrt{s_{NN}} = 14.6$, 19.6, 27 GeV.

Wei Zhang @ CFNS npQCD workshop

p+p Baseline

2023/11/09

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

• For p+p baselines at $\sqrt{s_{NN}} = 14.6$, 19.6, and 27 GeV are extracted from phenomenological interpolations

Wei Zhang @ CFNS npQCD workshop

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

6

p+p Baseline

- The p_T dependence of deduced J/ ψ differential cross section at midrapidity in p+p collisions at $\sqrt{s_{NN}} = 14.6, 19.6, 27 \text{ GeV}$
- The systematic uncertainty arises from fitting world-wide data:

$\sqrt{s_{NN}} = 14.6 \text{ GeV}$	19.2 %
$\sqrt{s_{NN}} = 19.6 \text{ GeV}$	11.7 %
$\sqrt{s_{NN}} = 27 \text{ GeV}$	6.1 %

J/ ψ R_{AA} vs. p_T in Au+Au Collisions

➢ Low p_T suppression, R_{AA} increases with p_T for √s_{NN} = 14.6, 19.6 and 27 GeV
➢ No significance p_T dependence at 200 GeV

$J/\psi R_{AA}$ vs. $\langle N_{part} \rangle$ in Au+Au Collisions

Hint of decreasing trend as a function of centrality

> R_{AA} shows no significant energy dependence at RHIC for similar <N_{part}>.

Energy Dependence of J/ ψ R_{AA}

X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication). L. Kluberg, Eur. Phys. J. C 43 (2005) 145. NA50 Collaboration, Phys. Lett. B 477 (2000) 28. > Data at $\sqrt{s_{NN}} = 14.6$, 19.6 and 27 GeV follow the trend

- > No significant energy dependence of $J/\psi R_{AA}$ in central collisions is observed within uncertainties up to 200 GeV
- Regeneration dominates at LHC energies
- Model qualitatively describes the observed energy dependence

ALICE Collaboration, Phys. Lett. B 734 (2014) 314 STAR Collaboration, Phys. Lett. B 771 (2017) 13-20 STAR Collaboration, Phys. Lett. B 797 (2019) 134917 ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

Zr+Zr & Ru+Ru Collisions

➤ High statistics enables measurements of:

- J/ψ production with high precision
- Sequential suppression of J/ψ , $\psi(2S)$

J/ ψ R_{AA} vs. p_T in Zr+Zr & Ru+Ru Collisions

STAR Collaboration, Phys. Lett. B 797 (2019) 134917

- ➤ Highest precision measurement at RHIC to date
- Significant suppression observed in central collisions
- > Consistent with Au+Au results at similar $\langle N_{part} \rangle$ range

$J/\psi R_{AA}$ vs. $\langle N_{part} \rangle$ at RHIC

> No significant collision system dependence at RHIC

$\psi(2S)$ Signal in Zr+Zr & Ru+Ru Collisions

A machine learning method is employed to reconstruct the $\psi(2S)$ signal

- Combinatorial background subtracted (mixed event)
- Fit with ψ(2S) signal lineshape (simulation) and residual background (linear function)

$\psi(2S)$ to J/ ψ Ratio in Zr+Zr & Ru+Ru Collisions

First observation of charmonium sequential suppression in

heavy ion collisions at RHIC $(3.5\sigma, 0-80\%)$

Ratio decreases towards central collisions

Double Ratio

 $\gg \psi(2S)$ over J/ ψ double ratio is smaller than that in p+A collisions

Double Ratio

pp reference is the average of measurements in p+p(d) by NA51, ISR and PHENIX

PHENIX, Phys.Rev.Lett. 111 (2013) PHENIX, Phys.Rev.D, 85,092004 (2012) NA50, Eur.Phys.J.C 48, (2006) E772, Phys.Rev.Lett. 66 (1991) 133-136

 $\gg \psi(2S)$ over J/ ψ double ratio is smaller than that in p+A collisions

Centrality dependence trend seems to be more similar to that at SPS than at LHC

 $\psi(2S)$ to J/ ψ Ratio vs p_{T}

- $\succ \psi(2S)$ to J/ψ ratio increases with p_T in isobaric collisions
- ➤ Significantly lower than that in p+p and p+A collisions at p_T < 2 GeV/c</p>
- Less conclusive at higher p_T due to large uncertainties in both p+p and A+A

STAR, Phys.Rev.D 100 (2019) PHENIX, Phys.Rev.D, 85,092004 (2012) HERA-B, Eur.Phys.J.C 49 (2007) E789, Phys.Rev.D 52 (1995) 1307, 1995.

- Significant suppression of charmonium in central heavy-ion collisions
- ➢ First observation of charmonium sequential suppression at RHIC
- > No significant collision energy and system dependence of J/ ψ R_{AA}
- > $J/\psi R_{AA}$ increases with p_T , hint of decreasing with centrality
- ----- Interplay of dissociation, regeneration and cold nuclear matter effects
- Constrain QGP properties

Back up

Systematic Uncertainty

Systematic uncertainty from J/ ψ yield measurements Source:

Track quality cuts

- *n*HitsFit
- *n*HitsDedx
- Dca (cm)

Signal extraction

- J/ψ templates
- Fitting range
- Residual background function form
- Combinatorial background function form
- Bin Width

Electron Identification cuts

- $n\sigma_e$ efficiency
- $1/\beta$ efficiency
- TOF Matching efficiency

Analyzed bin	27 GeV	19.6 GeV	14.6 GeV
0-80%	12.4 %	11.2 %	13.2 %
0-20%	13.2 %	12.3 %	13.1 %
20-40%	12.1 %	11.5 %	15.0 %
40-60%	11.5 %	11.6 %	
60-80%	14.4 %	16.1 %	13.5 %
0-1GeV/c	12.8 %	12.5 %	14.6 %
1-2GeV/c	14.4 %	11.6 %	12.7 %
2-4GeV/c	11.6 %	15.0 %	24.1 %

PP Inelastic Cross Section

PDG

PDG

10⁴

$\sigma_{\text{inelastic}} = \sigma_{\text{total}} - \sigma_{\text{elastic}}$	
---	--

$\sigma_{\text{inelastic}}$ (mb)	Error
43.3960	0.766915
32.9876	0.163660
32.0776	0.137064
31.7791	0.131443
31.4194	0.125273
30.9905	0.124518
30.6478	0.130914
	σ _{inelastic} (mb) 43.3960 32.9876 32.0776 31.7791 31.4194 30.9905 30.6478

Data from PDG (Particle Data Group) : https://pdg.lbl.gov/2022/hadronic-xsections/

1 I I I I I I I

 10^{3}

elastic

1 I I I I I

 10^{2}

313.5 / 109

1.124e-21

χ² / ndf

Prob

10

10

1

√S (GeV)