

Heavy flavor production and the properties of sQGP at top energies

Wei Xie for STAR Collaboration (PURDUE University, West Lafayette)

Motivation Heavy Quarkonium Production

- J/ψ
- Υ(ns)

Open Heavy Flavor Production

- D meson direct measurement
- Non-photonic electron (NPE)

Summary and future perspective

July 6 - 11, 2015

SQM 2015

Motivation

□ Heavy quarkonium production reveals critical features of the medium

- suppression from color screening or gluon scattering
- enhancement from coalescence

□ Heavy quarks interact with the medium differently from light quarks

- gluon bremsstrahlung radiation
- collisional energy loss
- collision dissociation
- Ads/CFT

Cold Nuclear effects

• Gluon shadowing, Color glass condensate, Initial state energy loss, etc

□ Sensitive to the nuclear gluon distribution and medium initial gluon density

produced mostly from gluon fusion

Quarkonium Suppression: "Smoking Gun" for QGP

Quarkonium Suppression: "Smoking Gun" for QGP

Quarkonium Suppression: "Smoking Gun" for QGP

The life of Quarkonia in the Medium can be Complicated

- Observed J/ ψ is a mixture of direct production+feeddown (H.K.Wohri @QWG2014)
 - Prompt J/ ψ : ~ 60% J/ ψ (direct) + 30% χ_c feed down + ~10% ψ (2s) feed down
 - Non-prompt: B meson feed down.
 - Important to disentangle different components
- <u>Suppression and enhancement in the "cold" nuclear medium</u>
 - Nuclear Absorption, nuclear PDF effects, initial state energy loss, Cronin effect and gluon saturation (CGC)
 - Study p+A collisions
- <u>Hot/dense medium effects</u>
 - J/ψ , Υ dissociation, i.e. suppression
 - Recombination, i.e. enhancement
 - Study different species, e.g. J/ψ , Υ
 - Study at different energies, e.g. RHIC, LHC

How does STAR Measure Heavy Quarkonia

How does STAR Measure Heavy Quarkonia

<u>Time Projection Chamber</u> (TPC)

- $|\eta| \leq 1.0$, full azimuth
- Tracking.

 $h_{\rm A}$

 $h_{
m B}$

PID through dE/dx

<u>Time of Flight (TOF)</u>

- $|\eta| \leq 0.9$, full azimuth
- PID through TOF
- Timing resolution: ~85 ps

e⁻/μ⁻

or b

Barrel Electromagnetic Calorimeter (BEMC)

- $|\eta| \leq 1.0$, full azimuth
- p/E for electron ID
- Fast online trigger
- High resolution SMD
- e/h separation

Heavy Flavor Tracker (HFT)

- $|\eta| \leq 1.0$, full azimuth
- PIXEL: X/X_0 : ~0.4%/layer
- High DCA resolution
 - $46\mu m@p_{T} = 0.75 GeV/c Kaon$
 - $\sim 30 \mu m @high p_T$

Muon Telescope Detector (MTD)

- $|\eta| \le 0.5, 45\%$ in azimuth
- Muon identification
- Muon trigger
- High timing reso.: ~95ps
- Good hit position resolution: ~1cm 5

$J/\psi~R_{AA}$ in 200 GeV Au+Au Collisions

Tsallis Blast-Wave model: ZBT et al., arXiv:1101.1912.

July 6 - 11, 2015

$J/\psi R_{AA}$ in 200 GeV Au+Au Collisions

July 6 - 11, 2015

SQM 2015

J/ ψ Suppression Pattern: $\sqrt{S_{NN}}$ dependence

- \Box High p_T less suppressed than low p_T
 - Cronin effect?
 - Longer formation time?

J/ ψ Suppression Pattern: $\sqrt{S_{NN}}$ dependence

\Box High p_T less suppressed than low p_T

- Cronin effect?
- Longer formation time?

\Box Different dependence of R_{AA} on p_T at LHC

- Less suppression at lower p_T & higher collision energies
- Consistent with regeneration picture
- □ Less regeneration than at LHC?
- □ or larger shadowing at LHC?

J/\u03c8 Elliptic Flow in 200 GeV Au+Au Collisions

□ Disfavors the case that J/ψ with $p_T > 2.0$ GeV/c is produced dominantly by coalescence from thermalized charm and anti-charm quarks

J/\u03c8 Elliptic Flow in 200 GeV Au+Au Collisions

Suppression vs. Energy in Au+Au Collisions

SQM 2

J/\u03c6 Production in p+p Collisions

- Color singlet model (NNLO*CS)
 - disagree with data
 - P. Artoisenet et al., PRL. 101, 152001 (2008), and J.P. Lansberg private communication.
- □ NLO CS+ CO & Color Evaporation Model & NRQCD
 - agree with the data
 - Y.-Q. Ma et al., Phys. Rev. D84, 51 114001 (2011), and private communication
 - M. Bedjidian et al., hep-ph/0311048; R. Vogt private communication

July 6 - 11, 2015

Details see B. Trzeciak's talk 10

J/\u03c6 Production in p+p Collisions

- □ Color singlet model (NNLO*CS)
 - disagree with data
 - P. Artoisenet et al., PRL. 101, 152001 (2008), and J.P. Lansberg private communication.
- □ NLO CS+ CO & Color Evaporation Model & NRQCD
 - agree with the data
 - Y.-Q. Ma et al., Phys. Rev. D84, 51 114001 (2011), and private communication
 - M. Bedjidian et al., hep-ph/0311048; R. Vogt private communication
- **\Box** Following x_T scaling in p+p collisions

July 6 - 11, 2015

10

J/\u03c8 Production in p+p Collisions

July 6 - 11, 2015

SQM 2015

Details see B. Trzeciak's talk 10

Enhancement in High Multiplicity p+p Collisions

□ HF production vs. event activity @LHC

- different trend in p+p and HI collisions
- Similar linear trend in p+Pb and Pb+Pb
- Faster rise in p+p
- Similar trend for J/ψ and D at mid-rapidity

Enhancement in High Multiplicity p+p Collisions

Enhancement in High Multiplicity p+p Collisions

July 6 - 11, 2015

SQM 2015

$\Upsilon(ns)$ are Cleaner Probes PLB735,127(2014) Stun Counts 120, Count: N_{+ +}+N.. • N₊. (C) STAR Au+Au N_{+ +}+N₋. • N₊. (a) STAR Au+Au 0 0 ∖s_{NN} = 200 GeV, |y_{ee}|<1.0 | s_{NN} = 200 GeV, |y_{ee}|<1.0 Comb. Background (CB) Comb. Background (CB) 50 CB + Drell-Yan + bb CB + Drell-Yan + bb 100 $CB + DY + b\overline{b} + \Upsilon(1S+2S+3S)$ CB + DY + bb + T(1S+2S+3S) 40 p+p×<N_{coll}> p+p×<N_{coll}> 80 30 60 20 40 10 20 30-60% centrality 0-10% centrality 10.5 8.5 9.5 10 11 11.5 12 8.5 9.5 10 10.5 11.5 12 11 $m_{ee} \ (GeV/c^2)$ $m_{ee} (GeV/c^2)$

Compared to J/y

- □ recombination can be neglected at RHIC
- □ Final state co-mover absorption is expected to be small

Y(*ns*) are Cleaner Probes

Compared to J/ψ

- □ recombination can be neglected at RHIC
- □ Final state co-mover absorption is expected to be small

For Y(1S) more suppressed in more central collisions

Consistent with prediction from a model requiring strong 2S and complete 3S suppression

Y(*ns*) are Cleaner Probes

Compared to J/ψ

- □ recombination can be neglected at RHIC
- □ Final state co-mover absorption is expected to be small
- For Y(1S) more suppressed in more central collisions

Consistent with prediction from a model requiring strong 2S and complete 3S suppression

- \Box $\Upsilon(nS)$ suppression are ordered by binding E
- Some models doesn't include CNM effect.
 - e.g. Strickland, Liu-Chen models

July 6 - 11, 2015

Cold Nuclear Matter Effect on Upsilon Production

PLB735,127(2014)

 $\square R_{dAu}(1S) = 0.83 \pm 0.15(dAu \, stat.) \pm 0.11(pp \, stat.)_{-0.07}^{+0.03}(dAu \, syst.) \pm 0.10(pp \, syst.)$ $\square R_{dAu}(nS) = 0.79 \pm 0.14(dAu \, stat.) \pm 0.10(pp \, stat.) \pm 0.03(dAu \, syst.) \pm 0.09(pp \, syst.)$

Cold Nuclear Matter Effect on Upsilon Production

 $\square R_{dAu}(1S) = 0.83 \pm 0.15 (dAu \, stat.) \pm 0.11 (pp \, stat.)^{+0.03}_{-0.07} (dAu \, syst.) \pm 0.10 (pp \, syst.)$

 $\square R_{dAu}(nS) = 0.79 \pm 0.14(dAu \, stat.) \pm 0.10(pp \, stat.) \pm 0.03 \, (dAu \, syst.) \pm 0.09(pp \, syst.)$

□ Indication of suppression in d+Au in |y| < 0.5.

• Indicative of effect beyond shadowing, initial state E-loss or absorption by spectator nucleons

Cold Nuclear Matter Effect on Upsilon Production

 $\square R_{dAu}(1S) = 0.83 \pm 0.15(dAu \, stat.) \pm 0.11(pp \, stat.)^{+0.03}_{-0.07}(dAu \, syst.) \pm 0.10(pp \, syst.)$

 $\square R_{dAu}(nS) = 0.79 \pm 0.14 (dAu \, stat.) \pm 0.10 (pp \, stat.) \pm 0.03 \, (dAu \, syst.) \pm 0.09 (pp \, syst.)$

□ Indication of suppression in d+Au in |y| < 0.5.

- Indicative of effect beyond shadowing, initial state E-loss or absorption by spectator nucleons
- The suppression is consistent with E772 results.

Essential to understand Open Heavy Flavor Production

- A good reference to quarkonium production
 - Similar initial state effects
 - CGC, Shadowing, initial state energy loss, etc.
 - Large cross section (compared to J/ψ).
 - Accurate reference measurements
- One of the most important probes for sQGP
 - Dominated by initial hard scatterings
 - Interactions between heavy quark and medium are quite different from the ones for light quarks
 - gluon radiation, collisional energy loss, collisional disassociation, etc
 - allow further understanding of the medium properties
 - A "Gold Mine" to be fully explored very soon

How does STAR Measure Heavy Open Heavy Flavors

<u>Time Projection Chamber</u> (TPC)

- $|\eta| \le 1.0$, full azimuth
- Tracking
- PID through dE/dx
 - Non-photonic electrons
 - Proxy of heavy quarks
 - Easier to trigger
 - Higher branching ratio

200000

800

 π^+

Time of Flight (TOF)

- $|\eta| \le 0.9$, full azimuth
- PID through TOF

000000

• Direct reconstruction

• Access heavy quark

Harder to trigger

kinematics directly.

• Lower branching ratio

• Timing resolution: ~85 ps

Barrel Electromagnetic Calorimeter (BEMC)

- $|\eta| \le 1.0$, full azimuth
- p/E for electron ID
- Fast online trigger
- High resolution SMD
- e/h separation

Heavy Flavor Tracker (HFT)

- $|\eta| \le 1.0$, full azimuth
- PIXEL: X/X_0 : ~0.4%/layer
- High DCA resolution
 - $\sim 46 \mu m@p_T = 0.75 GeV/c Kaon$
 - ~30µm@high p_T

Muon Telescope Detector (MTD)

- $|\eta| \le 0.5, 45\%$ in azimuth
- Muon identification
- Muon trigger
- High timing reso.: ~95ps
- Good hit position resolution: ~1cm

D⁰ Signal in Au+Au 200 GeV

Combining data from Run2010 & 2011

☐ Total: ~800 M Min.Bias events

Significant signals are observed

□ In all centrality bins

Centrality dependence of D⁰ Suppression in Au+Au 200 GeV

 \Box Suppression at high p_T in central and mid-central collisions

Centrality dependence of D⁰ Suppression in Au+Au 200 GeV

Suppression at high p_T in central and mid-central collisions
 D suppression pattern is similar to that of charged pions

Enhancement of D⁰ production at Intermediate p_T in Au+Au 200 GeV

Suppression at high p_T in central and mid-central collisions

Enhancement at intermediate p_T

- Can be described by models including coalescence between charm quark and light quark
- Cold nuclear matter effects may also contribute

N_{coll} Scaling of D⁰ Production in Au+Au 200 GeV

Charm quarks are mostly produced via initial hard scatterings
 Quantify other sources of production via high luminosity and upgrade

N_{coll} Scaling of D⁰ Production in Au+Au 200 GeV

Charm quarks are mostly produced via initial hard scatterings
 Quantify other sources of production via high luminosity and upgrade
 Indication of a breakdown of the N_{coll} scaling at LHC

• Shadowing?

July 6 - 11, 2015

Non-photonic Electron R_{AA} in Au+Au 200 GeV

~1 nb⁻¹ sampled luminosity in Run 2010 Au+Au collisions

Non-photonic Electron R_{AA} in Au+Au 200 GeV

- ~1 nb⁻¹ sampled luminosity in Run 2010 Au+Au collisions
- Strong suppression at high p_T in central collisions

 \Box D⁰, NPE results seems to be consistent

• kinematics smearing & charm/bottom mixing

Non-photonic Electron R_{AA} in Au+Au 200 GeV

- ~1 nb⁻¹ sampled luminosity in Run
 2010 Au+Au collisions
- Strong suppression at high p_T in central collisions

 \Box D⁰, NPE results seems to be consistent

• kinematics smearing & charm/bottom mixing

Models with radiative energy loss alone underestimate the suppression

• Uncertainty dominated by p+p

DGLV: Djordjevic, PLB632, 81 (2006) **CUJET:** Buzzatti, arXiv:1207.6020 **T-Matrix:** Van Hees et al., PRL100,192301(2008). **Coll. Dissoc.** R. Sharma et al., PRC 80, 054902(2009). **Ads/CFT:** W. Horowitz Ph.D thesis.

NPE Enhancement at Lower Energy

NPE Elliptic Flow Depend on Energy

<u>200 GeV Au+Au:</u>

□ Large NPE v_2 observed at low p_T → strong charm-medium interaction □ v_2 increase at $p_T > 3$ GeV/c

• Jet-like correlation

NPE Elliptic Flow Depend on Energy

200 GeV Au+Au:

□ Large NPE v_2 observed at low p_T → strong charm-medium interaction

- \Box v₂ increase at p_T > 3 GeV/c
 - Jet-like correlation

39 and 62.4GeV Au+Au:

 \Box v₂ consistent with zero

different from 200GeV results (p-value: 0.0014@62.4GeV, 0.005@39GeV)

□ Might suggest charm –medium interaction is not as strong as in 200 GeV

July 6 - 11, 2015

SQM 2015

New Era of Heavy Flavor Measurement at STAR

PIXEL:

- high hit resolution: 20.7µm pitch
- low thickness: $X/X_0 = 0.4\%$ /layer

Muon identificationMuon trigger

New Era of Heavy Flavor Measurement at STAR

PIXEL:

- high hit resolution: 20.7µm pitch
- low thickness: $X/X_0 = 0.4\%$ /layer
- □ significantly enhance STAR capability on measuring heavy flavor production at RHIC.
 - Direct D meson reco at low and high $\ensuremath{p_{T}}$
 - $B \rightarrow J/\psi \rightarrow \mu\mu + X, \Upsilon \rightarrow \mu\mu$
 - etc
- □ study QGP thermal dilepton radiation
 - Understanding background through e-µ correlation

July 6 - 11, 2015

Counts (per 10 MeV/c²)

 \Box No significant energy dependence for J/ ψ R_{AA} and R_{cp}

- □ J/ ψ v₂ measurements disfavor the case that coalescence of thermalized *c* \overline{c} dominates the production at p_T > 2 GeV/c in 200 GeV Au+Au collisions
- □ Upsilon suppression consistent with prediction from models requiring strong 2S and complete 3S suppression in 200 GeV Au+Au collisions
 - Indication of suppression in 200 GeV d+Au collisions (CNM effect).
- ❑ Large suppression of heavy quark production through NPE and D⁰ meson measurements in 200 GeV Au+Au collisions
- □ Larger NPE v₂ in 200 GeV than in 39 and 62.4 GeV Au+Au collisions, indicating the strength of charm-medium interaction increase with energy
- □ Indication of an enhancement of NPE production at 62.4 GeV

□ With HFT and MTD, more interesting results with good precision will come up soon

July 6 - 11, 2015

SQM 2015

Backup Slides

Significant v_2 observed at high p_T

 \Box Non-zero v₂ observed at high p_T

• No significant dependence on y and p_T.

PRL 111(2013)162301

- $V_2 = 0.054 \pm 0.013 \pm 0.006$ in |y| < 2.4 for $p_T > 6.5$ GeV in 10-60% centrality.
- Indicating path length dependence of suppression
- \Box Indication non-zero v₂ at low p_T

July 6 - 11, 2015

CMS PAS HIN-12-

001

• Consistent with regeneration from charm quark of significant v_2 .

How CNM plays a role in the suppression

Upsilon double ratio:

- □ Much lower in Pb+Pb.
- Initial state effect likely cancelled in the comparison
- □ Suppression in Pb+Pb is a final state effect.

J/ψ in pPb:

- \Box Significant suppression from CNM at low p_T
 - Close to R_{PbPb}
 - Pb+Pb partially compensated by regenerated J/ψ ?

How CNM plays a role in the suppression

Upsilon double ratio:

- □ Much lower in Pb+Pb.
- Initial state effect likely cancelled in the comparison
- Suppression in Pb+Pb is a final state effect.

J/ψ in pPb:

- \Box Significant suppression from CNM at low p_T
 - Close to R_{PbPb}
 - Pb+Pb partially compensated by regenerated J/ψ?

Suppression in Pb+Pb is a final state effect

H.K. Wohri @ QWG2014

H.K. Wohri @ QWG2014

