Extracting bottom quark production cross section from p+p collisions at RFIC

Wenqin Xu University of California, Los Angeles For the STAR collaboration Lake Louise Winter Institute Feb/26/2011

Contents

- Introduction
- STAR measurements of Non-Photonic Electron (NPE) spectrum
- Disentangle the bottom quark contribution to NPE and get $N_{e_B}/(N_{e_B}+N_{e_D})$
- Calculate the spectra of electrons from charm decays and bottom decays, separately
- Model calculations and total cross section extrapolations

Introduction

- Heavy quarks are good probes to study the QCD matter
- NPE: semi-leptonic decays of open heavy quark hadrons

The background in NPE analysis

The main background is photonic electrons:

Photon conversions in material Dalitz decays of pseudoscalar mesons

Reconstruct the invariant masses of electron pairs + apply opening angles cuts => Statistically obtain the yield of photonic electrons

Other background: vector meson decays $\omega, \rho, \phi, J/\Psi \rightarrow e^+e^-$

The contributions can be estimated through decay simulations with PYTHIA. ω, ρ, ϕ contribute very little at high p_T;

Hadron Contaminations

Controlled by particle ionization energy loss difference in STAR TPC gas.

 $\pi^0, \eta \rightarrow \gamma + e^+ + e^-$

 $\gamma \rightarrow e^+ + e^-$

STAR high p_T NPE Measurements in 200GeV p+p collisions ⁵

Measurement done with TPC+EMC for run08 and run05. Run 2005: high material budget v.s. Run 2008: low material budget p_T>2.5GeV/c NPE measurement with dramatically different photonic electron background agree with each very well

the Bottom Quark Contribution to NPE

A study on the azimuthal correlations between the non-photonic electrons and hadrons in pp collisions at $\sqrt{s} = 200$ GeV.

Compared against PYTHIA calculations to obtain the relative contributions of Bottom and Charm mesons.

the $N_{e_B}/(N_{e_B}+N_{e_D})$ ratio

Formulae to calculate B->e and D->e

$$N_{e_{B}} = (N_{e_{B}} + N_{e_{D}}) \cdot \frac{N_{e_{B}}}{N_{e_{B}} + N_{e_{D}}}$$

$$E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{B}} = E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{B} + e_{D}} \cdot \frac{N_{e_{B}}}{N_{e_{B}} + N_{e_{D}}}$$

$$E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{B} + e_{D}} = E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{NPE}} - E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{J/\psi,Y,Drall-Yan,}}$$
p+p collisions at $\sqrt{s} = 200$ GeV
Run8 and Run5 combined
STAR arXiv:1102.2611 (2011)

Invariant cross section of electrons from charm and bottom

M. Cacciari, R. Vogt, private communications

MSEL=1

PYTHIA 6.409^[2] calculations

MSEL=5, everything else the same

Other PYTHIA calculations

PYTHIA parameters	$\sigma_{B \to e}(nb)$	deviation
$\langle k_T \rangle = 2.0 \text{GeV}(\text{D}); \text{Max.} k_T = 5.0 \text{GeV}(\text{D}); \text{p.d.f} = \text{CTEQ5M1}$	40.2	0
$\langle k_T \rangle = 0.5 \text{GeV}; \text{Max.} k_T = 5.0 \text{GeV}(D); \text{p.d.f} = \text{CTEQ5M1}$	41.6	+3.5%
$\langle k_T \rangle = 1.5 \text{GeV}; \text{ Max.} k_T = 10.0 \text{GeV}; \text{ p.d.f} = \text{CTEQ5M1}$	38.5	-4.3%
$\langle k_T \rangle = 3.0 \text{GeV}; \text{ Max.} k_T = 15.0 \text{GeV}; \text{ p.d.f} = \text{CTEQ5M1}$	42.2	+5%
$\langle k_T \rangle = 4.5 \text{GeV}; \text{Max.} k_T = 20.0 \text{GeV}; \text{p.d.f} = \text{CTEQ5M1}$	36.0	-10.5%
$\langle k_T \rangle = 2.0 \text{GeV}(\text{D}); \text{Max.} k_T = 5.0 \text{GeV}(\text{D}); \text{p.d.f} = \text{CTEQ5L}(\text{D})$	38.8	-3.5%
CDF tuneA	45.7	+14%

All of them use the default MSEL=1 mode.

PYTHIA default

[3] http://www.phys.ufl.edu/~rfield/cdf/tunes/py_tuneA.html

Branch ratio Correction

particle	Admixture in PDG	in PYTHIA	B.R. in PDG	in PYTHIA
B^0	$(40.1 \pm 1.3)\%$	39.5%	$(10.33 \pm 0.28)\%$	10.52%
B^+	$(40.1 \pm 1.3)\%$	39.7%	$(10.99 \pm 0.28)\%$	10.47%
B^0_s	(11.3 ± 1.3) %	11.6%	$(7.9 \pm 2.4)\%$	10.53%
b-baryon	$(8.5 \pm 2.2)\%$	9.1%	$(\sim 9.3)\%$	9.24%
Admixture Average	-	-	$(10.86 \pm 0.35)\%$	10.4%

- The B[±], B⁰, B^s, B-baryons admixture and branch ratios in PYTHIA are close to PDG [4] values, based on measurements at LEP, Tevatron, Spps, etc.
- B[±],B⁰,B^s and B-baryons have similar semi-leptonic branch ratios and masses. So the result is not sensitive to the admixture.
- Estimated overall B.R.~ 10.4%

[4]:K. Nakamura *et al. (Particle Data Group), JPG* **37, 075021 (2010)**

Rapidity distribution correction

The total $b\overline{b}$ production cross sections In p+p collisions at $\sqrt{s} = 200$ GeV, extrapolated based on STAR NPE measurements at high p_T,

$$\sigma_{b\bar{b}} = 1.34 \mu b$$
 with PYTHIA, MSEL=1 Mode.
 $\sigma_{b\bar{b}} = 1.83 \mu b$ with PYTHIA, MSEL=5 Mode.

PYTHIA results bear12.5% (stat.) and 27.5% (sys.) experimental uncertainties.

FONLL^[1] calculation:
$$\sigma_{b\bar{b}} = 1.87^{+0.99}_{-0.67} \mu b$$

[1]:M. Cacciari, P. Nason and R. Vogt, Phys. Rev. Lett. 95, 20 122001 (2005);M. Cacciari, R. Vogt, private communications

backup

J/Ψ contribution

PHENIX:A. Adare *et al.* [*PHENIX Collaboration*], *Phys. Rev.* **D** 59 **82, 012001 (2010).** STAR:B. I. <u>Abelev *et al.* [*STAR Collaboration*], *Phys. Rev.* **C** 61 **80, 041902 (2009).**</u>

