Femtoscopy with unlike-sign kaons at STAR in 200 GeV Au+Au collisions

Jindřich Lidrych for STAR Collaboration Czech Technical University in Prague

Workshop on Particle Correlations and Femtoscopy 3rd - 7th November 2015

Outline

- Motivation for unlike-sign kaon femtoscopy
- STAR detector
- Preliminary results
- Purity corrections from fitting like-sign correlation function
- Comparison to Lednicky model
- Conclusion

Standard HBT measurements

• Koonin-Pratt eq.: $CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$ $r = x_1 - x_2$ $q_{inv} = p_1 - p_2 = 2k^*$

- Measurements with identical non-interacting particles
 - Only quantum statistics for description of their interaction

$$CF(p_1, p_2) = \int d^3r S(r, k) |\psi_{1,2}(r, k)|^2 \implies CF(p_1, p_2) = 1 \pm \int d^3r S(r, k) \cos(qr)$$

 Study source size and its dynamical properties - shape and timescale of the emission zone

Two-particle measurements

- Measurements with interacting particles
 - Coulomb interaction and strong final-state interaction
 - Sensitive to source size and measurements of particles' interactions

• In all these cases, the correlation function is sensitive to the pertinent physics at very low q_{inv}

3rd – 7th November 2015

HBT with narrow resonances

Use strong FSI in region of resonance:

Lednicky: Phys.Part.Nucl. 40 (2009) 307-352 Pratt et al.: PRC 68 (2003) 054901

- More sensitive
- Statistically advantageous

Challenges for HBT formalism:

- Extension of HBT formalism to higher q_{inv}
- Smoothness assumption

Lednicky et al.: Prog.Theor.Phys.Suppl. 193 (2012) 335-339

- Equal-time approximation
- "Double counting" direct vs FSI treatment (Lisa, WPCF2013)

System with narrow resonances near threshold:

• $\pi \Xi$ and K^+K^-

HBT with kaons

- Coulomb and strong final-state interaction (FSI)
- $\phi(1020)$ resonance: $k^* = 126 \text{ MeV}/c$, $\Gamma = 4.3 \text{ MeV}$
- Narrow resonance separation of emission and FSI

Advantages of using kaons:

- higher statistics
- low feed-down
- source is well known (imaging)

STAR Experiment at RHIC

3rd – 7th November 2015

Jindřich Lidrych

Data sample & Selection criteria

Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV taken in 2011, used 300M events

Event cut

Extraction of correlation function

Experimentally, $CF(q_{inv}) = \frac{real \ pairs}{mixed \ pairs}$ Pair cut

- -0.5 < Split Level < 0.6 Phys. Rev. C 71 (2005) 44906
 - To remove track splitting one track reconstructed as two tracks
- Fraction of Merged Hits < 0.05
 - To remove merged tracks two tracks with low q_{inv} reconstructed as one track

Event mixing

- V_Z 10 mixing bins 6 cm
- Multiplicity: 100 per bin

Binning

- 5 centralities: 0-5%, 5-10%, 10-30% 30-50%, 50-75%
- $4k_T$: [0.05, 0.35], [0.35, 0.65] [0.65, 0.95], [0.95, 1.25] GeV/c $k_T = \left(\frac{\overrightarrow{p_1} + \overrightarrow{p_2}}{2}\right)$

Unlike-sign 1D correlation function

Centrality dependence

• Significant dependence is observed in $\phi(1020)$ region (CF are integrated over k_T)

k_T dependence

• Significant dependence is observed in $\phi(1020)$ region for all centralities

 $q_{inv} = p_1 - p_2 = 2k^*$

Unlike-sign 1D correlation function

Centrality dependence

• Significant dependence is observed in $\phi(1020)$ region (CF are integrated over k_T)

k_T dependence

• Significant dependence is observed in $\phi(1020)$ region for all centralities

 $q_{inv} = p_1 - p_2 = 2k^*$

- In order to compare experimental correlation function to theoretical predictions, the corrections are needed
 - Purity correction
 - Correction via λ parameter from fitting like-sign correlation function

PairPurity correction

- Correction for misidentification of kaons
- Due to excellent tracking ability of STAR detector very high purity

Like-sign 1D correlation function and fitting

- Used for extraction of kaon emission source size R_{inv} and λ
- Fitting function: $CF(q_{inv}) = \left[(1 \lambda) + \lambda K(q_{inv})e^{-R_{inv}^2 q_{inv}^2} \right] \mathcal{N},$ where λ - correlation strength, $K(q_{inv})$ - Coulomb function and \mathcal{N} - normalization

Like-sign 1D correlation function and fitting

• λ , R_{inv} and normalization \mathcal{N} are parameters of fit

 Uncertainty is dominated by systematic error, which is obtained by varying the fit range

• The source radii R_{inv} increase with the centrality and decrease with pair transverse momentum k_T

Comparison of unlike-sign 1D correlation function to Lednicky model

Lednicky model includes the treatment of φ resonance due to the FSI as well as generalized smoothness approximation
 Lednicky: Phys.Part.Nucl. 40 (2009) 307-352
 ^{0.8}
 ^{0.8}

 $CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$

- Gaussian parameterization of source size source size R_{inv} is extracted from fitting like-sign correlation function
- The theoretical function is transformed to a experimental one via: $CF^{exp} = (CF^{theor} - 1)\lambda + 1,$ in order to compare to an experimental correlation function, which is corrected for impurities

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 0-5 %

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 5-10 %

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 10-30 %

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 30-50 %

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 50-75 %

First look at 3D unlike-sign CF

Conclusion

Measurement of K⁺K⁻ correlations in Au+Au collisions at 200 GeV

- Strong centrality dependence in $\phi(1020)$ region
- k_T dependence in $\phi(1020)$ region

Extraction of λ parameter and source radii R_{inv} from like-sign CF in Au+Au collisions at 200 GeV

Comparison of unlike-sign correlation function to Lednicky's model

- The Lednicky's model reproduces overall structure of the observed correlation function.
- In the peripheral collisions the model under predicts the strength of the correlation functions in the region of resonance.

Thank you for your attention

Back-up

• The theoretical function is transformed to a experimental one via: $CF^{exp} = (CF^{theor} - 1)\lambda + 1$, in order to compare to an experimental correlation function Centrality 10-30 %

Back-up

• The theoretical function is transformed to a experimental one via: $CF^{exp} = (CF^{theor} - 1)\lambda + 1$, in order to compare to an experimental correlation function Centrality 30-50 %

