Photoproduction in Ultra Peripheral Relativistic Heavy Ion Collisions with STAR

Yury Gorbunov for the STAR collaboration Creighton University

Ultra Peripheral Collisions

- Ultra Peripheral Collisions nuclei miss each other and interact via long range fields
- Strong electromagnetic fields from heavy ions
 - Weizsacker-Williams: a field of almost-real photons
 - Solution Wirtuality $Q^2 < (h/R_A)^2$
- Solution Photon $E_{max} \sim \gamma h/R_A$
 - 3 GeV with gold at RHIC
 - 80 GeV with Lead at the LHC
- Photon flux ~ Z²
 - Higher intensity with heavy ions, higher probability of multi-photon interactions

Photonuclear and $\gamma\gamma$ Interactions

- Photonuclear interactions
 - γ -Pomeron/meson can be coherent
 - Coupling: A^{4/3} (surface) to A² (volume)
- $\gamma\gamma$ interactions
 - QED process proposed as luminosity monitor
- Strong coupling and multiple interactions
 - $Z^2\alpha \sim 0.6$ with gold/lead
 - Multi photon reactions
 - Mutual Coulomb excitation event tag
 - Factorize as function of impact parameter
- Required $b > 2R_A$
 - No hadronic interactions
 - ♦ ~ 20-60 fm at RHIC

$$\sigma = \int d^2 b P_{2GDR}(b) P_{\rho^0}(b)$$

Photoproduction Physics

- Gluon structure function
 - γA -> J/Ψ, cc(bar), dijets, etc
 - $\sigma_{_{J/\Psi}} \sim g^2(x)$
 - $\sigma_{_{QQ, dijets}} \sim g(x)$
- Meson spectroscopy
 - ρ,ω,φ, excited states, etc
- Fundamental tests of Quantum Mechanics
 - Interference between non overlapping particles
- Diffractive phenomenon
 - Elastic and inelastic processes, spin dependence
- New physics
 - Glueballs, odderons, etc

STAR Detector

Signatures & Triggering

- Signatures:
 - Coherent production dominates
 - → $p_{\tau} \le 2h/RA \approx 60 \text{ MeV/c}$
 - Low multiplicity events with vertex
 - Events with nuclear breakup accompanied by forward neutrons
- Triggers:
 - "Minimum bias"
 - Low multiplicity
 - Neutrons in both ZDCs
 - "Topology"
 - Low multiplicity events
 - Coincidence of North and South
 - Top and Bottom veto cosmics

ho^{0} Photoproduction at STAR

- Coherently produced events
 - Exclusive ρ⁰ accomponied by mutual Coulomb excitation
 - ◆ p_T < 150 MeV/c</p>
 - Acceptance corrected
- Fit function:
 - Relativistic Breit-Wigner for ρ⁰ signal
 - Mass independent direct $\pi^+\pi^-$ production amplitude
 - Söding term for the interference of the two=

$$rac{d\sigma}{dM_{\pi\pi}} = ig|Arac{\sqrt{M_{\pi\pi}M_
ho\Gamma
ho}}{M_{\pi\pi}^2-M_
ho^2+iM_
ho\Gamma
ho} + Big|^2.$$

Phys. Rev. C77 34910 (2008)

ρ Production Cross Section

- Goncalves & Machado (EPJ C29,2003)
 - QCD color dipole approach
 - Nuclear effects and parton saturation phenomena
- Frankfurt, Strikman & Zhalov (PRC67 034901 2003)
 - Generalized vector dominance (VDM)
 - QCD Gribov-Glauber approach
- Klein & Nystrand (PR C60 014903, 1999)
 - VDM
 - Classical mechanical approach for scattering

Coherent and Incoherent Production of p

Non resonant pion production

Ratio of non-resonant to resonant pion production

$$rac{d\sigma}{dM_{\pi\pi}} = ig|Arac{\sqrt{M_{\pi\pi}M_
ho\Gamma_
ho}}{M_{\pi\pi}^2-M_
ho^2+iM_
ho\Gamma_
ho} + Big|^2.$$

- |B/A| ratio of non-resonant to resonant $\pi^+\pi^-$ production
 - ◆ 200 GeV: |B/A| = 0.84 ± 0.11 GeV ^{-1/2}
 - ◆ 130 GeV: |B/A| = 0.81 ± 0.28 GeV -1/2
 - No angular dependence or rapidity dependence
 - In agreement with previous HERA experiments
 - EPJ C2 247 (1998)

S-channel Helicity

S-channel helicity conservation

Produced vector meson retains helicity of the initial photon

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos(\Theta_h)d\Phi_h} = \frac{3}{4\pi}\left[\frac{1}{2}(1-r_{00}^{04}) + \frac{1}{2}(3r_{00}^{04}-1)\cos^2(\Theta_h)\right]$$

- $-\sqrt{2}\Re e[r_{10}^{04}]\sin(2\Theta_h)\cos(\Phi_h) r_{1-1}^{04}\sin^2(\Theta_h)\cos(2\Phi_h)]$
 - \blacksquare Θ is angle between polar angle between the beam direction and the direction of the $\pi^{\scriptscriptstyle +}$
 - Φ is angle between ρ decay and production plane
- Spin density elements close to zero s-channel helicity conservation

Parameter	STAR	ZEUS
r_{00}^{04}	$-0.03\pm0.03_{stat.}\pm0.06_{syst.}$	$0.01\pm0.01_{stat.}\pm0.02_{syst.}$
$\mathfrak{Re}[r_{10}^{04}]$	—	$0.01\pm0.01_{stat.}\pm0.01_{syst.}$
r_{1-1}^{04}	$-0.01\pm0.03_{stat.}\pm0.05_{syst.}$	$-0.01\pm0.01_{stat.}\pm0.01_{syst.}$

- The fit function describes different states: non-flip, single and double flip and their combination
 - Not able to measure interference between non flip and single flip due to production plane ambiguity

Phys. Rev. C77 34910 (2008)

ρ Production Cross Section

- AuAu √s=62 GeV
- ♦ AuAu √s=130 GeV
- ◆ AuAu √s=200 GeV
- ♦ dAu √s=200 GeV

- In progress
- PRL89 272302 (2002)
- PRC77 34910 (2008)
- In progress

Production cross section with mutual Coulomb excitation as a function of ion gamma Solid line – simulation based on Klein & Nystrand

ρ Production in dAu collisions

Asymmetric collision

- The photon is almost always emitted by the gold nucleus, avoiding the two-fold ambiguity.
- Two fit functions
 - Single exponential
 - Fit function based on the Glauber prediction from Eisenberg et al, NP B104, 61 1976
- Downturn at low t, not enough energy for the d dissociation
 - Similar behavior observed by SLAC experiment at 4.3 GeV Eisenberg et al, NP B104, 61 1976

Blue – coherent production

Interference in p Production

- Impossible to distinguish source of γ and target
 - Interference
 - Entangled final state $\pi\pi$ wave function
- $\rho,\omega,\phi, J/\psi$ are $J^{PC} = 1^{-1}$


```
nucl-ex/0402007
```

- $\sigma \sim |A_{1(b,y)} A_{2(b,-y)}e^{ip \cdot b}|^2$ where b is impact parameter
- Suppression at low $p_T \le h/$
- Different triggers provide access to different median impact parameter
 - ◆ Topology data : median b \approx 46 fm
 - Minimum bias : median b \approx 18 fm (extends interference effects to larger p_T)
- Photon energy dependence of the ρ production amplitudes leads to the decrease of the interference at large rapidities

Interference in coherent **p** Production

Measured level of interference at 87 ±5 (stat.) ±8 (syst.)% from the expected level (arXiv:0812.1063)

Photoproduction of $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

- Expected to be largely through a radially excited ρ
 - Could be ρ(1450) and/or ρ(1700)
- Peaks at low p_T due to the coherent production
- Mass spectra similar to γp collisions
- Studies of the substructure showed low mass pion pairs accompanied by ρ(770)

e⁺e⁻ Production at STAR in AuAu at $\sqrt{s}=200$ GeV

- Compared with two models
 - EPA(equivalent photon approach)
 - Treats γ as real photon
 - QED lowest order QED calculation based on GDR only with correction for higher states Hencken PR C69 054902 (2004)
- New calculation by Baltz PRL 100, 062302 (2007)
 - Realistic phenomenological treatment of nuclear breakup

J/ψ Production at RHIC

Trigger

- ◆ e⁺e⁻ pair + 1 nucleus breakup
- Signal: 12 events

334 exclusive $\mu^+\mu^-$ events Paper draft in collaboration

Cross section at expected level, big errors

J/Ψ Photoproduction

- J/ψ sensitive to gluon distribution in the nucleus
 - σ ~ g(x,Q²)²
 - \blacksquare X ~ few 10⁻⁴ for J/ ψ at LHC
 - X ~ few 10^{-2} for J/ ψ at RHIC
- Clear shadowing effect
 - Several factor difference in cross section at LHC

Black → Impulse Approx.
Red → gluon diffractive density
Blue → H1 Gluon density

Maximum mass given by the coherence production conditions:

 $M_{max} = \gamma h/R_{nucleus}$

Mass of accessible final states increase from 2- 3 GeV to 100
 GeV

Program at LHC

- CMS, ALICE, ATLAS, FP420, TOTEM & other forward detectors planed programs
- "Yellow Book" gives physics case
 - K. Hencken et al., Phys. Rept. 458, 1 (2008).
- Gluon structure Functions at low-x
 - Nuclear gluon distributions can be measured by studying photo-production of heavy quarks
 - σ_{J/ψ}~g²(x)
 - $\sigma_{_{QQ, dijets}} \sim g(x)$
- The 'black disc' regime of QCD
- Search for exotica/new physics
 - $\gamma\gamma$ --> Higgs, Magnetic monoples, etc.
- Diffractive phenomenon
 - Roman pots useful for pp

Plans at LHC

PbPb UPC - 5.5 TeV - 0.5 nb⁻¹ $\neg \gamma Pb \rightarrow Y (\rightarrow \mu^{\dagger}\mu^{\dagger})$ $\gamma \gamma \rightarrow \mu^+ \mu^-$ G 200 entries 15 tracker+u-chambers mutu- (GeV/c2) PbPb UPC - 5.5 TeV - 0.5 nb⁻¹ (60 MeV/c² $\gamma Pb \rightarrow Y (\rightarrow e^+e^-)$ $\gamma \gamma \rightarrow e^+e^-$ 250 tracker+ 8.5 10.5 11 11.5 12 9 95 mete. (GeV/c2)

Dd'E, hep-ex/0703024

- **J**/ ψ , ψ ', Y in lepton channel
 - CMS, ATLAS, Alice
 - ightharpoonupγ+A ightarrowJ/Ψ +A
 - \star expected prod rate ~ 1x10⁷/ year
 - *■* γ+A →Y +A
 - * expected prod rate ~ 1x10⁵/ year
- Photonuclear production of heavy quarks
 - γ+g→cc
- Di-jets
 - ATLAS
 - Photonuclear jet production; photon+parton \rightarrow jet+jet; e.g. γ +g \rightarrow q+q
- Triggering is challenging
 - ZDC signal may help reduce background; not always available at Level 0

- Hadron collider is unique tool to study photoproduction reaction
 - At RHIC STAR & Phenix have studied several topics
 - Published new measurement of ρ^0 production cross section at $\sqrt{s}=200$ GeV
 - * Good agreement with theoretical predictions
 - Paper about interference effect has been submitted to the PRL and is likely being published
 - Ongoing analysis
 - dAu at 200 GeV and AuAu at 62 GeV data sets are currently analyzed
 - * Resonant production of $\pi\pi\pi\pi$ at $\sqrt{s} = 200$ GeV
 - At very advanced stage, manuscript is being prepared

Outlook

- Several new detector are being commissioned right now
 - Central Trigger Barrel is being replaced by the TOF system
 - Improved triggering performance
 - New data acquisition system
 - Readout at 1kHz with low dead time

- Roman pots system has been installed
 - Dedicated three day run this year
 - * Phase I elastic scattering and particle production in Double Pomeron Exchange (DPE)
 - \star Phase II increased data set for elastic scattering and particle production in DPE
- RHIC is a good place to study diffractive and electromagnetic processes in heavy ion collisions

- New DAQ 1000 system should increase available statistic by factor 10
 - Studies of J/Ψ, etc
 - Gluon shadowing
 - Substructure in 4 pion state
 - Meson spectroscopy : ρ*,ρ⁰ρ⁰,ω,φ, etc
- Roman pots system
 - Elastic and inelastic diffractive processes and spin dependence
 - Exotic