# Jet Quenching Dependence on Angularities and Flavor at RHIC

# Sevil Salur

# for STAR





Supported in part by:





STAR Experiment at the Relativistic Heavy Ion Collider 2014-04-15 09:30:43 EDT Au+Au @ \ssn = 200 GeV Run Number / Event ID:15105019 / 204002





# Jets:





S.D Drell, D.J.Levy and T.M. Yan, Phys. Rev. **187**, 2159 (1969) N. Cabibbo, G. Parisi and M. Testa, Lett. Nuovo Cimento **4**,35 (1970) J.D. Bjorken and S.D. Brodsky, Phys. Rev. D 1, 1416 (1970) Sterman and Weinberg, Phys. Rev. Lett. 39, 1436 (1977) ... and many more

# Jets with STAR:





- PID possible through TPC, TOF and MTD
- HFT facilitate precision measurements of particles containing heavy quarks.
- Jet measurements through the clustering of energy deposits using BEMC for neutral particles and the precise momentum of charged tracks measured by inner detectors.

# Jets with STAR:





STAR's vibrant scientific program continues! Publications that utilize jets are steadily growing.





To what extent can the identities of underlying partons be deduced from properties of the jets they produce?

# **Generalized Angularity**

- Jet angularity: a measurement of how spread out or concentrated the energy is
- Tunable to different aspects of jet fragmentation:  $\kappa \ge 0$  and  $\beta \ge 0$  control the momentum and angular contributions,
- Essential for understanding the internal structure and properties of jet, eg. q vs g

#### Momentum dispersion $p_T^D$ : (Energy Sharing)



Measures  $2^{nd}$  moment of the constituent  $p_T$  distribution in the jet and is connected to how hard or soft the jet fragmentation is.

$$\lambda_{eta}^{\kappa} = \sum_{i \in ext{jet}} z_i^{\kappa} \left( rac{\Delta R_i}{R} 
ight)^{eta}$$
 ,

$$\Delta R_i = \sqrt{(\Delta y_i)^2 + (\Delta \phi_i)^2}$$

*z<sub>i</sub>:* fractional p<sub>⊤</sub> of *i*th jet constituent



A. Larkoski, J. Thaler, W. J. Waalewijn JHEP11(2014)129



In fact, there are many jet substructure observables:

• Jet Mass:  $M = \sqrt{E^2 - p_{\rm T}^2 - p_{\rm z}^2},$ 

Measures how spread out the constituents of the jet are.

- Jet Charge:  $Q^{\kappa} = \frac{1}{(p_{\mathrm{T}}^{\mathrm{jet}})^{\kappa}} \sum_{i \in jet} q_i (p_{\mathrm{T}}^i)^{\kappa}.$
- Radial moment girth (g):  $g = \sum_{i} \frac{p_{T,i}}{p_{T,jet}} |\Delta R_i|$
- LeSub:  $LeSub = p_{T,track}^{lead} p_{T,track}^{sublead}$
- Fragmentation
- function (FF):
- Differential jet shape:  $\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{\sum_{\text{tracks} \in (r_a, r_b)} p_{\text{T}}^{\text{trk}}}{p_{\text{T}}^{\text{jets}}}$

Not an inclusive list but examples of jet substructure measurements that are currently being used as tools to disentangle different kinds of jets and study the effects of QGP.



 $FF(z) = \frac{1}{N_{iot}} \frac{dN}{dz}$ 



Measures 1<sup>st</sup> radial moment or

collimation / broadening of a jet

angularity and is sensitive to



## Jet Shapes:





Low- $p_T$  tracks dominated by background High- $p_T$  tracks located near jet core compared to low- $p_T$ , as expected



# Hadron yields relative to event plane



Control *path-length* of jet quenching with centrality and *event plane angle* Fix trigger jet relative to the "2nd order" event plane:  $\psi_{EP,2}$ 



The associated yields show no dependence on the event plane.



- Hints of low- $p_T$  tracks pushed toward farther distances in out-of-plane relative to in-plane
- Above 2 GeV/c, results are consistent with each other
- Less steep than @ LHC Energies

CMS, Physics Letters B, Vol 730, (2014) p243-263

**STAY TUNED:** results for pp and finalized systematics are on their way!

Leading Jets EP resolution corr.

### **Event Selection for Measurements of Angularities & D<sup>0</sup> Jets:**



 Data: Au+Au @ √s<sub>NN</sub> = 200GeV (2014)
 Minimum Bias & High Tower (HT) triggered events tower with E<sub>tower</sub> > 4 GeV (for D0 jets) & (for Inclusive Jets)

Simulations:
 GEN: PYTHIA-6 Perugia-STAR dijet events
 RECO: PYTHIA-6 Perugia-STAR + GEANT3 + STAR Au+Au Run14 MinBias

### **Jet Reconstruction:**

M. Cacciari, G. Salam, G. Soyez, JHEP 04 (2008) 06

- TPC tracks & calorimeter energy depositions with the anti- $k_{\tau}$  algorithm R = 0.4 (w/ FASTJET)
- Angularities: Hard-core jets i.e., constituents with  $p_{T,trk}(E_{T,tower}/c) \ge 2 \text{ GeV/c}$ , D<sup>0</sup> jets: constituents with  $p_{T,trk}(E_{T,tower}/c) \ge 0.2 \text{ GeV/c}$
- Jet area > 0.4 to suppress fake jets
- $N_{\text{con,charged}} \ge 2$  for non-trivial values of observables

# **Corrections to experimental data:** (Background and detector effects)



- MultiFold: An unfolding method that iteratively reweights a simulated dataset, using ML.
- Unbinned: Use of arbitrarily highdimensional data to incorporate information from the full phase space.
- Simultaneously unfolding of  $p_{T,jet}$ ,  $\eta_{jet}$ ,  $\phi_{jet}$ ,  $N_{con,charged}$ ,  $p_{TD}$ , LeSub and Girth

- Multifolding uses Dense Neural Networks (DNNs) trained on full embedding sample at the detector level and the generator level
- DNNs were implemented using Energyflow package

A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, and J. Thaler, PRL 124, 182001 (2020)

(JHEP 04 (2018) 013)

# Ex: Performance of Multi-Fold





+ 4 more observables for a net 7D unfolding

Good closure is observed for inputted jet observables in central and peripheral collisions.

### LeSub





$$LeSub = p_{T,track}^{lead} - p_{T,track}^{sublead}$$

Consistent within conservative systematic conservative uncertainties between central, peripheral collisions.

### Dispersion





$$p_T^D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i p_{T,i}}$$

The kink at 0.7 due to strong dependence on number of constituents in jet .

Consistent within conservative systematic conservative uncertainties between central, peripheral collisions.

## Girth





$$g = \sum_{i} \frac{p_{T,i}}{p_{T,jet}} |\Delta R_i|$$

Consistent within conservative systematic conservative uncertainties between central, peripheral collisions.

Studies ongoing to improve systematic uncertainties.

## Heavy Flavor Dependence



132301 (2014)

0,03



Heavy flavor tagged jets can be selected on displaced vertices.





Suppression of b quarks in PbPb, while no suppression in pPb collisions



At high pt region, mass effect can be neglected. Study at RHIC is necessary. R<sub>gluon</sub>:fraction of g->b R<sub>b</sub> :fraction of b->b R<sub>other</sub>:fraction of q->b

Explore multi tags such as c/b jet with D/B and  $\gamma$ .

## Explore with jets with D<sup>0</sup> mesons at LHC



CMS, Phys. Rev. Lett. 125 (2020) 102001



of the data. In PbPb collisions, compared to the pp results, the D<sup>0</sup> meson distribution for  $4 < p_T^D < 20 \text{ GeV}/c$  hints at a larger distance on average with respect to the jet axis, reflecting a diffusion of charm quarks in the medium created in heavy ion collisions. At higher  $p_T^D$ , the PbPb and pp radial distributions are found to be similar.

# **D<sup>0</sup> Reconstruction with STAR**



- Data

····· Signal

----- Background

Gaus + pol3

Yield = 63481.39 ± 331.29

m(Kπ) [GeV/*c*<sup>2</sup>]



K and  $\pi$  identified using TPC and TOF



Excellent track pointing resolution to improve signal to background ratio in HF hadron reconstruction.

Topological cuts utilizing HFT on the D<sup>0</sup> candidates improve signal significance

1.9

Counts(/27 [MeV/*c*<sup>2</sup>])

STAR

Au+Au √s<sub>NN</sub> = 200 GeV

0 - 80 %

1 < p<sub>т D<sup>0</sup></sub> [GeV/*c*] < 10

1.8

- $_{s}\mathcal{P}lot$
- Native class in RooStats, and widely used in HEP

**STAR,** Phys. Rev. C 99 (2021) 034908

• Unbinned maximum likelihood fit to invariant mass integrated over all kinematics

- $p_{T,jet}$  and radial distributions with all D<sup>0</sup>-tagged jet candidates using sWeights
- Easy to include reconstruction efficiencies versus  $D^0$  kinematics Nucl. Instrum. Methods Phys. Res., A (2005) 555

### Transverse momentum spectra of D<sup>0</sup> Jets





🗕 🗕 🗕 Svs. Unc. 1.5 T<sub>AA</sub> Unc. LIDO (MPI = off) Stat. Unc. Only 1 R<sub>cP</sub>(/40-80%) 0.5 Central (0-10%) 1.5 STAR Preliminary 0.5 Au+Au √s<sub>NN</sub> = 200 GeV Full Jets, anti- $k_{T}$ , R = 0.4,  $h_{let} < 0.6$  $1 < p_{T,D^0} [GeV/c] < 10^{-10}$ MidCentral (10-40%) 15 5 10 20 p<sub>T,Jet</sub> [GeV/c]

LIDO **agrees well** with yield in peripheral events, **slightly underpredicts** yield in central events.

Hint of suppression for central. Rcp midcentral events consistent with 1

W. Ke, Y. Xu, S. Bass, Phys. Rev. C 98, 064901 (2018)

## Fragmentation Function of D<sup>0</sup> Jets





W. Ke, Y. Xu, S. Bass, Phys. Rev. C 98, 064901 (2018)

Hard fragmented D<sup>0</sup> jet yield suppressed in central & midcentral events

Soft fragmented D<sup>0</sup> jet yield ratio consistent with 1 in central & midcentral events

## Radial Profile of D<sup>0</sup> Jets





Data

Sys. Unc.

1.4

$$\Delta R = \sqrt{\left(\eta_{Jet} - \eta_{D^0}\right)^2 + \left(\varphi_{Jet} - \varphi_{D^0}\right)^2}$$

LIDO **agrees with** radial profile W. Ke, Y. Xu, S. Bass, Phys. Rev. C 98, 064901 (2018)

Ratio of radial profiles consistent with 1 No hint of diffusion at RHIC energies.



First fully corrected observations of  $p_T^p$ , Girth and LeSub from hard-core jets in AA collisions at RHIC energies

- First heavy-ion results using Multifold to remove detector effects and residual background fluctuations.
- Central and Peripheral events results look alike within current uncertainty estimates.

First D<sup>0</sup>-tagged jet measurement at RHIC energies

- A shift in transverse momentum is observed towards a suppression in the nuclear modification factors.
- Hard fragmented jets are suppressed in central collisions.
- No diffusion is observed.

*STAY TUNED:* Results for pp and finalized systematics are on their way!