

Azimuthally sensitive femtoscopy with RHIC Beam Energy Scan II data from STAR

Yevheniia Khyzhniak (for the STAR Collaboration) The 39th Winter Workshop on Nuclear Dynamics

Tilted emission source

• The 3D initial geometry of a non-central heavy-ion collision breaks the forwardbackward symmetry by a "tilt" of the fireball with respect to the reaction plane

Motivation

New J.Phys. 13 (2011) 065006

• The tilt is strikingly large at low energies and drops with energy, consistent with the expectation that collisions become increasingly boost invariant (at least near midrapidity) with increasing energy

- Boost-invariant models incapable of capturing physics of participant zone with large spatial tilt
- EoS strongly influences the dynamics of an expanding system
 Check EoS

Femtoscopy

- Femtoscopy measures so-called regions of homogeneity (phase space region of outgoing particles with similar velocity vector)
- We can probe different homogeneity regions by varying pairs' transverse momenta

- Femtoscopy allows one to explore:
 - >Size of the emission source
 - ≻Lifetime of source
 - ≻Emission duration
 - ≻System dynamics
 - ≻Source shape
 - ≻Orientation

Created medium

Radii response

Created medium

Radii response

Femtoscopic parameters are extracted by fitting correlation function with Bowler-Sinyukov procedure

 $C(q) = N[(1 - \lambda) + \lambda K(q)(1 + e^{-\sum_{i,j=0,s,l} q_i q_j R_{ij}^2})]$

Phys. Lett. B 270 (1991) 69 Phys. Lett. B 432 (1998) 248

N- normalization factor $\lambda-$ correlation strength parameter K(q) - is a squared like-sign pion pair Coulomb wave-function integrated over a spherical Gaussian source R_{ij} - femtoscopic radii

• Fit correlation functions in different azimuthal angles with respect to the event plane and extract source parameters for each case

• Construct azimuthal angle dependence of the extracted parameters (R_{ij}) and fit these oscillations

Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

• Tilt calculation from extracted fit parameters

$$\begin{split} \theta_{sl} &= \frac{1}{2} \tan^{-1} \left(\frac{-4R_{sl,1}^2}{R_{l,0}^2 - R_{s,0}^2 + 2R_{s,2}^2} \right) \\ \theta_{ol} &= \frac{1}{2} \tan^{-1} \left(\frac{-4R_{ol,1}^2}{R_{l,0}^2 - R_{s,0}^2 + 2R_{s,2}^2} \right) \end{split}$$

Phys.Lett.B 489 (2000) 287-292 Phys.Rev.C 66 (2002) 044903 Phys.Rev.C 84 (2011) 014908

The STAR experiment

- Time Projection Chamber (TPC) + iTPC (BES-II upgrade)
 - Momentum and pion identification
- Event Plane Detector (EPD)
 - Part of the BES-II upgrade
 - Reconstruction of the firstorder event plane (proxy for reaction plane)
- Energies of interest (BES-II):
 - Au+Au@7.7 GeV
 - Au+Au@14.5 GeV
 - Au+Au@27 GeV

One-dimensional projection of correlation function

- Fit describes correlation functions reasonably well in both experiment and UrQMD
- A slight deviation from the Gaussian shape in the longitudinal direction can be attributed to a "halo" emission from resonance

Two-dimensional projections of correlation functions

R_{out}, *R_{side}*, *R_{long}* inversely ~ width of the CF in the out, side, long directions

- "Cross-term" radii are reflected in the "tilt" of the CF
 - Example: $R_{side-long}^2$ shows up as a tilt of the CF in $\{q_{side}, q_{long}\}$ projection

Radii oscillations example in UrQMD

• R_o^2 and R_s^2 exhibit significant, equal and opposite oscillations in φ , reflecting an almondshaped overlap region between the target and projectile spheres

• R_{ol}^2 and R_{sl}^2 exhibit oscillations of equal magnitude, aligning with the emission of pions from an ellipsoidal source tilted in coordinate space away from the beam axis

Radii oscillations example in experiment

• R_o^2 and R_s^2 exhibit significant, equal and opposite oscillations in φ , reflecting an almondshaped overlap region between the target and projectile spheres

• R_{ol}^2 and R_{sl}^2 exhibit oscillations of equal magnitude, aligning with the emission of pions from an ellipsoidal source tilted in coordinate space away from the beam axis

Correction for event plane resolution

Workshop on QCD phase structure at high baryon density, CCNU, 2019 P. Tribedy

Correction of magnitudes

 $\begin{array}{l} Phys.Lett.B\;496\;(2000)\;1\text{-}8\\ Phys.Rev.C\;92\;(2015)\;1,\;014904\\ Phys.Lett.B\;785\;(2018)\;320\text{-}331 \end{array}$

Energy dependence of the tilt

- In trend with AGS data
- Drops with energy, consistent with the expectation that collisions become increasingly boost invariant
- Good agreement with UrQMD 3.4 ("cascade" mode)
- Slight difference between θ_{SL} and θ_{OL} tilts

Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

k_T dependence of the tilt in the experiment and UrQMD

• Larger k_T pairs are emitted from smaller emission regions at earlier times with less correspondence to the size and shape of the entire fireball

k_T dependence of the tilt in the experiment and UrQMD

- Discrepancy between "outlong" and "side-long" tilt in UrQMD might be attributed to model limitations to describe system evolution
 - "side" radius reflects the spatial extent of the pionemitting source, while "out" combines both spatial extent and the emission duration of the fireball
- Better agreement between experiment and UrQMD at 30-50% centrality

What is the correspondence of the femtoscopy tilt and tilt of the freeze-out distribution?

The simplistic model with unique spatial tilt

Freeze-out coordinates in UrQMD

x vs. y vs. z freeze-out xy projection x vs. y vs. z freeze-out xz projection x vs. y vs. z freeze-out yz projection (jiii) Bar x (fm) 0.0007406 0.0007252 0.001003 9.0007863 0.0005954 0.0006533 6.374 6.369 4.127 4.434 4.264 = 5.374370 -10 🔁 10 20 10 30 30 30 20 y (fm) z (fm) z (fm) $f(x,y,z) \sim \exp\left(-\frac{(x\cos\theta_S - z\sin\theta_S)^2}{2\sigma_{x'}^2} - \frac{y^2}{2\sigma_y^2} - \frac{(x\sin\theta_S + z\cos\theta_S)^2}{2\sigma_{z'}^2}\right)$

• Realistic picture is more complicated than just tilted ellipsoid

Complicated structure of the freeze-out distribution

Phys.Rev.C 84 (2011) 014908 *Phys.Rev.C* 89 (2014) 1, 014903

 Realistic picture reveals complex geometry and affected by non-Gaussianity of the source, collective flow...

• Extracted tilt strongly depends on the fit range in \vec{r} [fm]

x vs. y vs. z freeze-out xz projection

Range of freezeout distribution fitting

• Extracted tilt strongly depends on the spatial scale

Correspondence between femtoscopy tilt and freeze-out distribution tilt

x vs. y vs. z freeze-out xz projection

Correspondence between femtoscopy tilt and freeze-out distribution tilt

• Extrapolation to $k_T = 0$ will give the best possible comparison between tilt of homogeneity region and freeze-out distribution tilt of the "whole source"

Statistical uncertainties only

Summary

- First measurements of the spatial tilt at the RHIC energies was done
- Tilt dependence on energy
 - Obtained results in trend with AGS data
 - Collision geometry becomes increasingly boost invariant at higher energies

- Tilt dependence on transverse momentum of pion pair
 - In order to check correspondence between femtoscopy results and direct fit to the freeze-out distribution an extrapolation of k_T dependence of tilt was made down to $k_T = 0$ in UrQMD model
 - Obtained results lies within ~ 2 degrees between the two methods
 - The same extrapolation was performed for experimental data and shows reasonable agreement with the UrQMD results

Freeze-out distribution pions

Freeze-out distribution of pairs of pions

Freeze-out distribution of pairs of pions (delta of coordinates of the pair)

x vs. y vs. z freeze-out yz projection

Δx vs. Δy vs. Δz fr

