Azimuthally sensitive femtoscopy with RHIC Beam Energy Scan II data from STAR

Yevheniia Khyzhniak (for the STAR Collaboration)
The $39^{\text {th }}$ Winter Workshop on Nuclear Dynamics

Tilted emission source

- The 3D initial geometry of a non-central heavy-ion collision breaks the forwardbackward symmetry by a "tilt" of the fireball with respect to the reaction plane

Motivation

New J.Phys. 13 (2011) 065006

- The tilt is strikingly large at low energies and drops with energy, consistent with the expectation that collisions become increasingly boost invariant (at least near midrapidity) with increasing energy
$>$ Boost-invariant models incapable of capturing physics of participant zone with large spatial tilt
- EoS strongly influences the dynamics of an expanding system
$>$ Check EoS

Femtoscopy

- Femtoscopy measures so-called regions of homogeneity (phase space region of outgoing particles with similar velocity vector)
- We can probe different homogeneity regions by varying pairs' transverse momenta

Kinetic freeze-out

- impossible to measure directly
- Momentum (p) is accessible in experiment

Femtoscopy

- Femtoscopy allows one to explore:
$>$ Size of the emission source
$>$ Lifetime of source
$>$ Emission duration
$>$ System dynamics
$>$ Source shape
>Orientation

Procedure: step 1

Created medium

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Created medium

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 1

Radii response

- Construct correlation functions for different ranges of azimuthal angles of the particle pair with respect to the event plane

Procedure: step 2

Femtoscopic parameters are extracted by fitting correlation
function with Bowler-Sinyukov procedure

$$
C(q)=N\left[(1-\lambda)+\lambda K(q)\left(1+e^{-\sum_{i, j=o, s, l} q_{i} q_{j} R_{i j}^{2}}\right)\right]
$$

Phys. Lett. B 270 (1991) 69
Phys. Lett. B 432 (1998) 248
N - normalization factor λ - correlation strength parameter $K(q)$ - is a squared like-sign pion pair
Coulomb wave-function integrated over
a spherical Gaussian source
$R_{i j}$ - femtoscopic radii

- Fit correlation functions in different azimuthal angles with respect to the event plane and extract source parameters for each case

Procedure: step 3

- Construct azimuthal angle dependence of the extracted parameters $\left(R_{i j}\right)$ and fit these oscillations

Procedure: step 4

$$
\begin{aligned}
& \theta_{s l}=\frac{1}{2} \tan ^{-1}\left(\frac{-4 R_{s l, 1}^{2}}{R_{l, 0}^{2}-R_{s, 0}^{2}+2 R_{s, 2}^{2}}\right) \\
& \theta_{o l}=\frac{1}{2} \tan ^{-1}\left(\frac{-4 R_{o l, 1}^{2}}{R_{l, 0}^{2}-R_{s, 0}^{2}+2 R_{s, 2}^{2}}\right)
\end{aligned}
$$

Phys.Lett.B 489 (2000) 287-292 Phys.Rev.C 66 (2002) 044903 Phys.Rev.C 84 (2011) 014908

- Tilt calculation from extracted fit parameters

The STAR experiment

- Time Projection Chamber (TPC) + iTPC (BES-II upgrade)
- Momentum and pion identification
- Event Plane Detector (EPD)
- Part of the BES-II upgrade
- Reconstruction of the firstorder event plane (proxy for reaction plane)
- Energies of interest (BES-II):
- Au+Au@7.7 GeV
- Au+Au@14.5 GeV
- Au+Au@27 GeV

One-dimensional projection of correlation function

There is a slight suppression due to the Coulomb
repulsion of like-sign pion pairs

- Fit describes correlation functions reasonably well in both experiment and UrQMD
- A slight deviation from the Gaussian shape in the longitudinal direction can be attributed to a "halo" emission from resonance

Radii oscillations example in UrQMD

- R_{o}^{2} and R_{s}^{2} exhibit significant, equal and opposite oscillations in φ, reflecting an almondshaped overlap region between the target and projectile spheres
- $R_{o l}^{2}$ and $R_{s l}^{2}$ exhibit oscillations of equal magnitude, aligning with the emission of pions from an ellipsoidal source tilted in coordinate space away from the beam axis

Radii oscillations example in experiment

Statistical uncertainties only

- R_{o}^{2} and R_{s}^{2} exhibit significant, equal and opposite oscillations in φ, reflecting an almondshaped overlap region between the target and projectile spheres
- $R_{o l}^{2}$ and $R_{s l}^{2}$ exhibit oscillations of equal magnitude, aligning with the emission of pions from an ellipsoidal source tilted in coordinate space away from the beam axis

Correction for event plane resolution

Correction of magnitudes

$$
R_{\mu, n}^{2 \text { true }}=\frac{R_{\mu, n}^{2 o b s}}{\left\langle\cos \left(n\left(\Psi_{n}-\Psi_{R P}\right)\right)\right\rangle}
$$

Phys.Lett.B 496 (2000) 1-8
Phys.Rev.C 92 (2015) 1, 014904 Phys.Lett.B 785 (2018) 320-331

Energy dependence of the tilt

- In trend with AGS data
- Drops with energy, consistent with the expectation that collisions become increasingly boost invariant
- Good agreement with UrQMD 3.4 ("cascade" mode)
- Slight difference between $\theta_{S L}$ and $\theta_{O L}$ tilts

Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

k_{T} dependence of the tilt in the experiment and UrQMD

- Larger k_{T} pairs are emitted from smaller emission regions at earlier times with less correspondence to the size and shape of the entire fireball

Low k_{T}

High k_{T}

k_{T} dependence of the tilt in the experiment and UrQMD

- Discrepancy between "outlong" and "side-long" tilt in UrQMD might be attributed to model limitations to describe system evolution
- "side" radius reflects the spatial extent of the pionemitting source, while "out" combines both spatial extent and the emission duration of the fireball
- Better agreement between experiment and UrQMD at $30-50 \%$ centrality

What is the correspondence of the femtoscopy tilt and tilt of the freeze-out distribution?

The simplistic model with unique spatial tilt

New J.Phys. 13 (2011) 065006 Phys.Rev.C 84 (2011) 014908 Phys.Rev.C 89 (2014) 1, 014903

$$
f(x, y, z) \sim \exp \left(-\frac{\left(x \cos \theta_{S}-z \sin \theta_{S}\right)^{2}}{2 \sigma_{x^{\prime}}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}-\frac{\left(x \sin \theta_{S}+z \cos \theta_{S}\right)^{2}}{2 \sigma_{z^{\prime}}^{2}}\right)
$$

Freeze-out coordinates in UrQMD

x vs. y vs. z freeze-out $x y$ projection

x vs. y vs. z freeze-out $x z$ projection

x vs. y vs. z freeze-out yz projection

$$
f(x, y, z) \sim \exp \left(-\frac{\left(x \cos \theta_{S}-z \sin \theta_{S}\right)^{2}}{2 \sigma_{x^{\prime}}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}-\frac{\left(x \sin \theta_{S}+z \cos \theta_{S}\right)^{2}}{2 \sigma_{z^{\prime}}^{2}}\right)
$$

- Realistic picture is more complicated than just tilted ellipsoid

Complicated structure of the freeze-out distribution

$\mathrm{UrQMD} \mathrm{Pb}+\mathrm{Pb}$ at $E_{\text {lab }}=8 \mathrm{GeV}, \mathrm{b}=3.4-6.8 \mathrm{fm},|\mathrm{y}|<0.5$, and $p_{\perp}<0.4 \mathrm{GeV}$

- Realistic picture reveals complex geometry and affected by non-Gaussianity of the source, collective flow...
- Extracted tilt strongly depends on the fit range in $\vec{r}[f m]$
x vs. y vs. z freeze-out xz projection

Range of freezeout distribution fitting

- Extracted tilt strongly depends on the spatial scale

Correspondence between femtoscopy tilt and freeze-out distribution tilt

x vs. y vs. z freeze-out xz projection

Correspondence between femtoscopy tilt and freeze-out distribution tilt

Low k_{T}

High k_{T}

> Extrapolation to $k_{T}=0$ will give the best possible comparison between tilt of homogeneity region and freeze-out distribution tilt of the "whole source"

Statistical uncertainties only

Summary

- First measurements of the spatial tilt at the RHIC energies was done
- Tilt dependence on energy
- Obtained results in trend with AGS data
- Collision geometry becomes increasingly boost invariant at higher energies

Freeze-out distribution pions

No difference for tilt
Freeze-out distribution of pairs of pions

Freeze-out distribution of pairs of pions (delta of coordinates of the pair)

