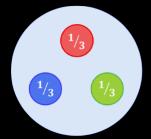
Tracing the baryon number carrier through photon induced processes from STAR

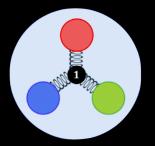
In part supported by
u.s. DEPARTMENT OF
ENERGY

Prithwish Tribedy for the STAR collaboration

(Brookhaven National Laboratory)

The 39th Winter Workshop on Nuclear Dynamics, Jackson, WY, Feb. 11-17, 2024



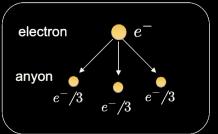

Reviews in Physics 2 (2017) 3–18, Komargodski, 1812.09253

https://en.wikipedia.org/wiki/Proton https://en.wikipedia.org/wiki/Baryon

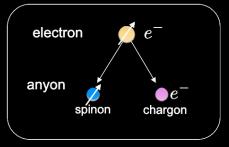
Baryons, along with mesons, are hadrons, particles composed of quarks. Quarks have baryon numbers of $B = \frac{1}{3}$ and antiquarks have baryon numbers of $B = -\frac{1}{3}$. The term "baryon" usually refers to *triquarks*—baryons made of three quarks $(B = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1)$.

1963-70

1975-


Baryon number is a strictly conserved quantum number & assumed to be carried by the valence quarks each carrying 1/3

Goldberg and Y. Ne'eman, Nuovo Cimento 27 (1963) 1 Gell-Mann, Zweig, 1964, SLAC 1970 Review: hep-ph/9301246 Baryon number may flow with the flow of the Y-shaped string junction (QCD topology)


X. <u>Artru</u>, Nucl. Phys. B 85, 442–460 (1975), G.C. Rossi and G. Veneziano, Nucl. Phys.B123(1977) 507; Phys. Rep.63(1980) 149 Kharzeev, Phys. Lett. B, 378 (1996) 238-246

No experiment has conclusively established the true carrier of baryon number, two different carriers for Q & B inside a baryon possible

Condensed matter analogies

(a) $\nu=1/3$ fractional quantum Hall Fractional charge of e \rightarrow fractional electric charge of quarks

(b) spin-charge separation ē spilt to quasiparticles carrying charge & spin → separate carriers of Q & B for a baryon

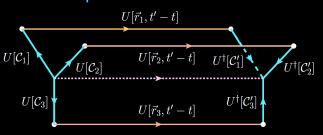
Understanding of baryon junctions as a carrier of baryon number

Nuclear Physics B

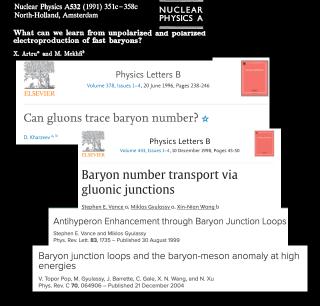
String model with baryons:
Topology; classical motion

**Actru.*

Nuclear Physics B

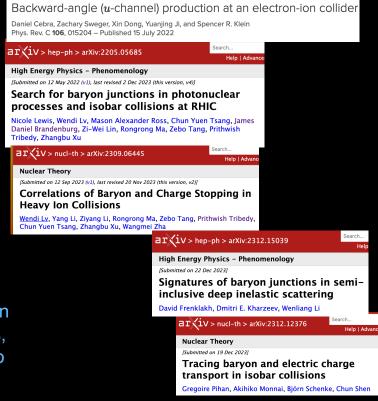

Volume 273, Issue 3, 10 Moy 1977, Popes 507-545

A possible description of baryon dynamics in dual and gauge


String models for hadrons, a Y-shaped junction for baryons, hadrons as "irreducible" gauge-invariant operators

theories

G.C. Rossi *, G. Veneziano **


1990s

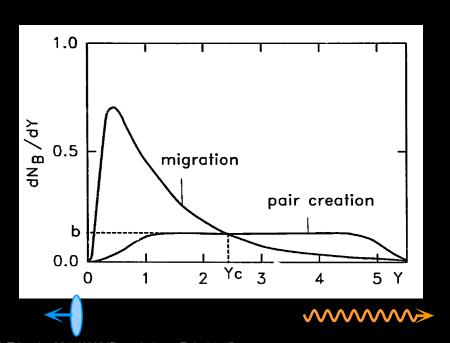
Manifestations of junction in high-energy collisions, junctions in Monte-Carlo

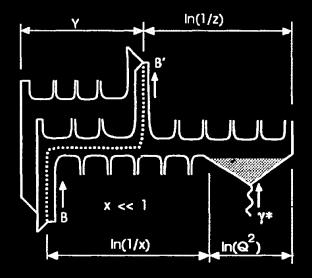
2022-

G. Veneziano, 1st workshop on baryon dynamics, SBU, 2024

Experimental test of the true carriers of the baryon number

Using photon-induced processes to identify the baryon carrier


Nuclear Physics A532 (1991) 351c-358c North-Holland, Amsterdam


NUCLEAR PHYSICS A Photon is a baryon-free projectile, baryon distribution in γ+p/A —> cleanest way to identify baryon carrier

$$dN_B/dY \simeq \beta (2p \cdot p'/m^2)^{-\beta} \simeq \beta \exp(-\beta Y)$$

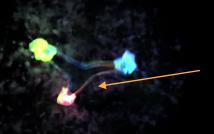
What can we learn from unpolarized and polarized electroproduction of fast baryons?

X. Artru^a and M. Mekhfi^b

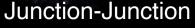
Rapidity asymmetry from colliding a source of photon at various energies on baryon —> reveal the junction-like structure of a baryon

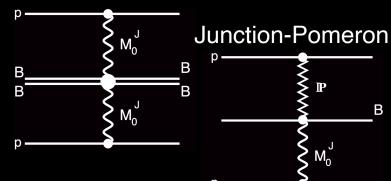
Physics Letters B

Volume 378, Issues 1–4, 20 June 1996, Pages 238-246


Can gluons trace baryon number? ★

D. Kharzeev a, b


$$B = \epsilon^{ijk} \left[P \exp\left(ig \int_{x_1}^x A_{\mu} dx^{\mu}\right) q(x_1) \right]_i \times \left[P \exp\left(ig \int_{x_2}^x A_{\mu} dx^{\mu}\right) q(x_2) \right]_j$$
$$\times \left[P \exp\left(ig \int_{x_2}^x A_{\mu} dx^{\mu}\right) q(x_3) \right]_k$$

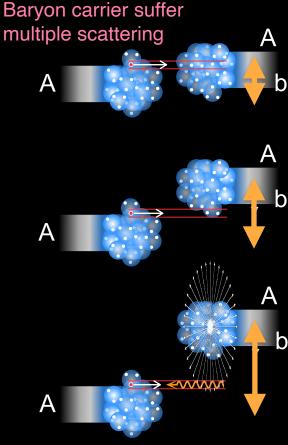

Baryon junction: $e^{-\alpha_B(y-Y_{\text{beam}})}$ $0.42 \le \alpha_B \le 1$

PYTHIA 6 (Quarks): $\sigma \sim \overline{e}^{2.5(y-Y_{\mathrm{beam}})}$

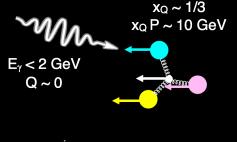
String-junction: non-perturbative gluon configuration

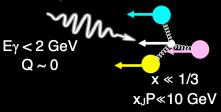


Regge theory predicts larger baryon transport to mid-rapidity for stopping gluonic junctions than valence quarks


Strategies for tracing the baryon carrier

Check if charge and baryon are carried by the same object


Compare electric-charge with baryon transport


Q <-> Z/A x B

Centrality dependence of dn/dy(B) vs. Ybeam

Find if the baryon carrier is a gluonic object by colliding with a photon of very small stopping power

Yield and rapidity dependence of dn/dy(B) in γ+A collisions

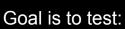
Measurements in isobar collisions: different carriers for Q & B?

Talk by Rongrong Ma (Mon, 11 am)

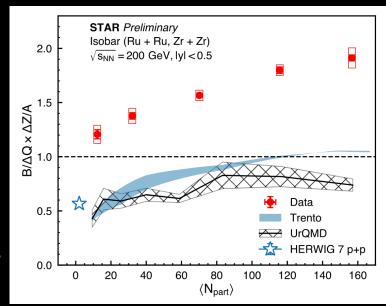
B:junction Q:valence quarks

B & Q: valence quarks

Zirconium:

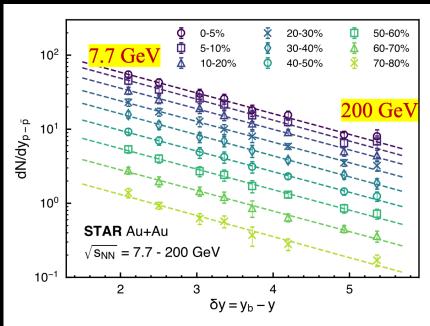

A=96 (Total baryon) Z=40 (Total charge)

Ruthenium:



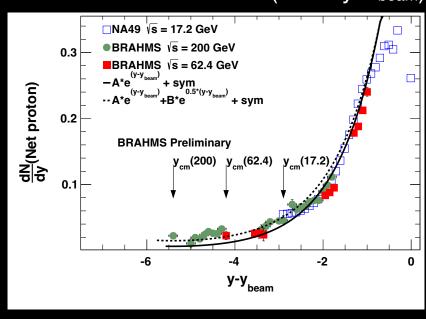
$$\Delta Q \leftrightarrow rac{\Delta Z}{A} imes E$$

$$R2_{\pi} = \frac{(N_{\pi^+}/N_{\pi^-})^{\text{Ru}}}{(N_{\pi^+}/N_{\pi^-})^{\text{Zr}}}$$


$$\Delta Q = N_{\pi} \left[(R2_{\pi} - 1) + \frac{N_K}{N_{\pi}} (R2_K - 1) + \frac{N_p}{N_{\pi}} (R2_p - 1) \right]$$

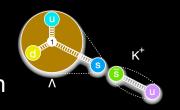
STAR data: stronger baryon vs netelectric charge transport at mid-rapidity: hints different carriers for baryon & electric charge


Rapidity distribution of baryon production: Global data


STAR data: N. Lewis, et. al., arXiv:2205.05685, BRAHMS+NA49: F. Videbaek, 1st workshop on baryon dynamics, SBU, 2024

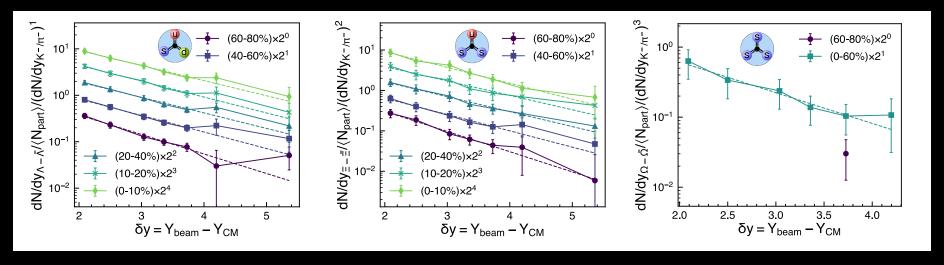
Baryon transport with rapidity loss (y-Y_{beam})

Exponential with slope -0.63±0.2, no change with centrality for 2<Y_{beam}<5.5



At higher energy rapidity slope closer to~0.5 lower energy (ly-Y_{beam}l<2) rapidity slope ~1

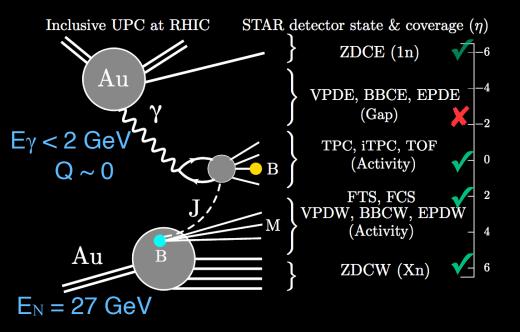
Rapidity slope of baryon density: centrality independent, depends on ly-Y_{beam}l range

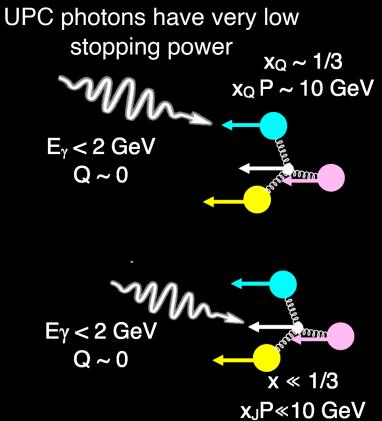

Rapidity distribution of strange baryons

Strange baryon production requires replacing incoming quark(s) in p &n through $s-\overline{s}$ production

STAR data for BES-I:
G. Agakishiev Phys. Rev. Lett. 98,
062301 (2007),108, 072301 (2012), J.
Adam Phys. Rev. C 102, 034909 (2020),
Adamczyk et al, Phys. Rev. C 96,
044904 (2017), T. Sang, 1st workshop
on baryon dynamics, SBU, 2024

More details: https://indico.cfnssbu.physics.sunysb.edu/event/113/contributions/750/

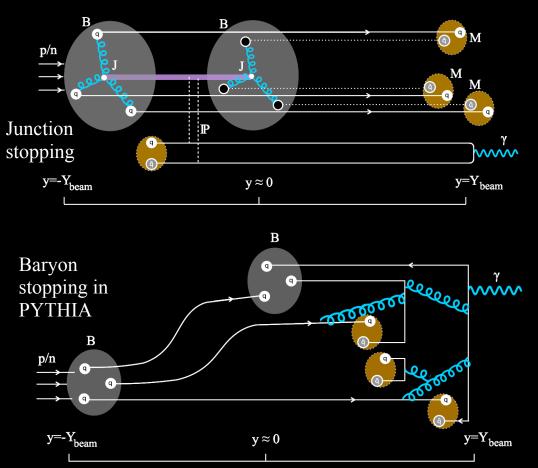

Net yield is scaled by $(\bar{K}/\bar{\pi})^n$ to compensate for difficulty in "n" s-quark production Exponential slope for different net-strange baryons (Λ,Ξ,Ω) seen similar to net-proton

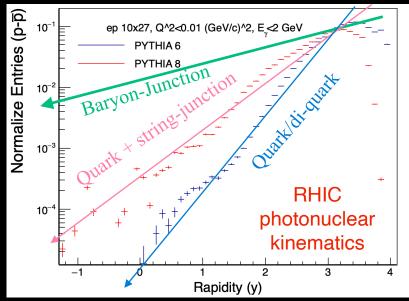

Rapidity slope of baryon density has no strong flavor dependence

Probing baryon structure with photon-induced processes

Fig: Lewis et. al, arXiv: 2205.05685, Sweger, CA EIC consortia meet

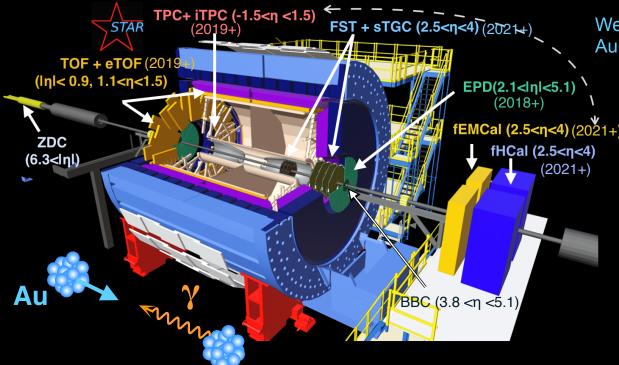
We trigger on γ+Au events in Ultraperipheral collisions of Au+Au at 54.4 GeV Approximate γ+Au √s_{γN}~10 GeV




Search for non-zero net-baryon in photon-ion collisions near central-rapidity

Probing baryon structure with photon-induced processes

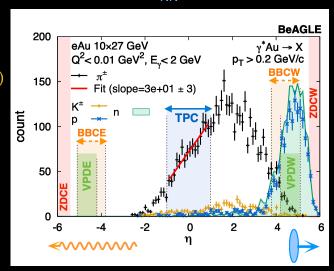
Lewis et. al, arXiv:2205.05685 Dumitru, CFNS workshop on target fragmentation, 2022



PYTHIA 6: Quark carries baryon PYTHIA 8: Quark + mimic string-junction

Models with various different carriers predict different rapidity dependence of net-proton yield

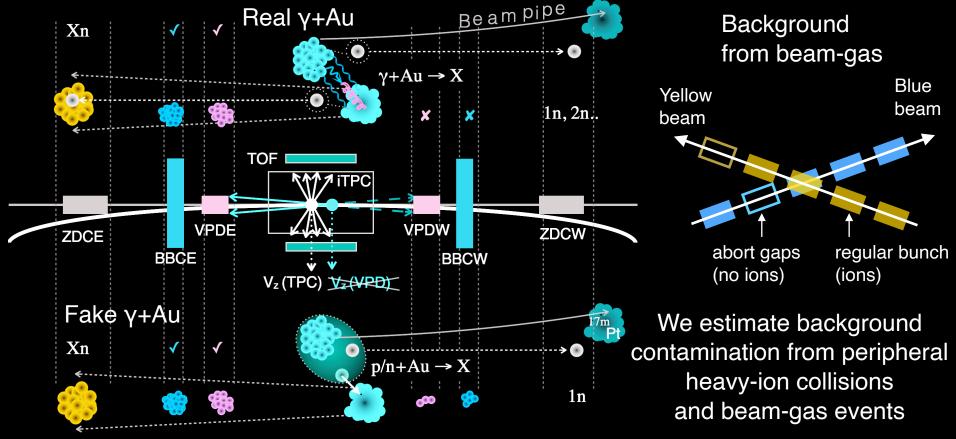
Triggering inclusive photon-induced processes by the STAR detector


Time Projection Chamber (TPC) Time-Of-Flight detector (TOF)

- Track reconstruction
- Identify particles using dE/dx

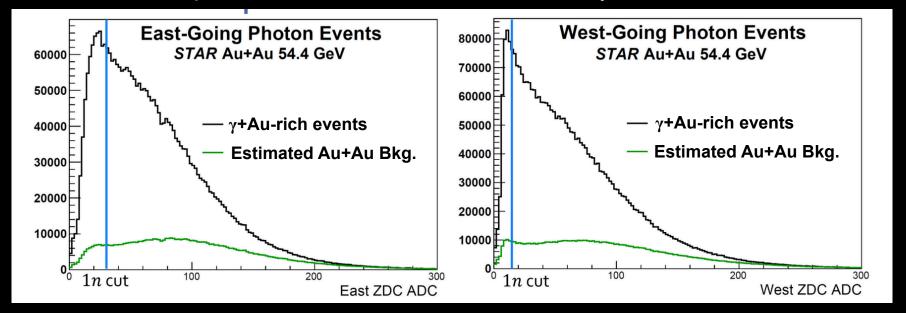
- Extend particle identification to high pT
- Pile-up rejection

Lewis et. al. arXiv: 2205.05685. BeAGLE: W. Chang, et al PRD 106, 012007 (2022)


We trigger y+Au events in ultra-peripheral Au+Au collisions at √s_{NN} = 54.4 GeV

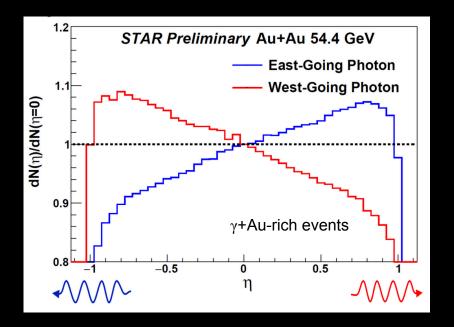
Use characteristic asymmetric particle production to trigger inclusive γ +Au events with help of:

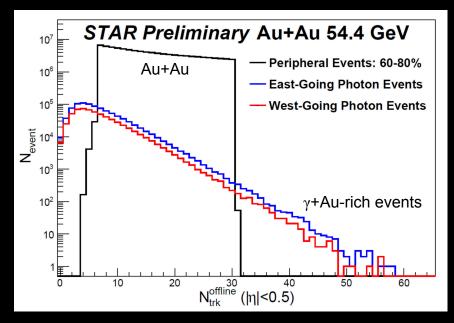
- Beam-Beam counter (BBC).
- Zero-Degree Calorimeter (ZDC),
- Vertex Position Detector (VPD)


Triggering inclusive photon-induced processes by the STAR detector

1nXn conditions on ZDCs largely suppress beam-gas background

Trigger efficiency: contamination from peripheral Au+Au events

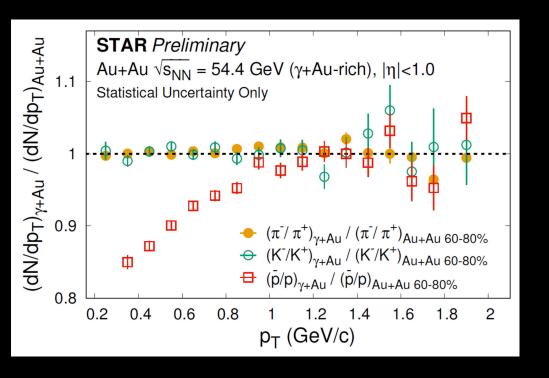

Unlike Au+Au, in γ+Au events, ZDC dist. is dominated by Coulomb excitation neutrons



Estimate background contribution utilizing ZDC ADC distributions of peripheral events

• Scale down so the tail matches γ+Au-enriched events, for large values of ADCs

Contamination from fake y+Au candidates estimated to be 10% and accounted for



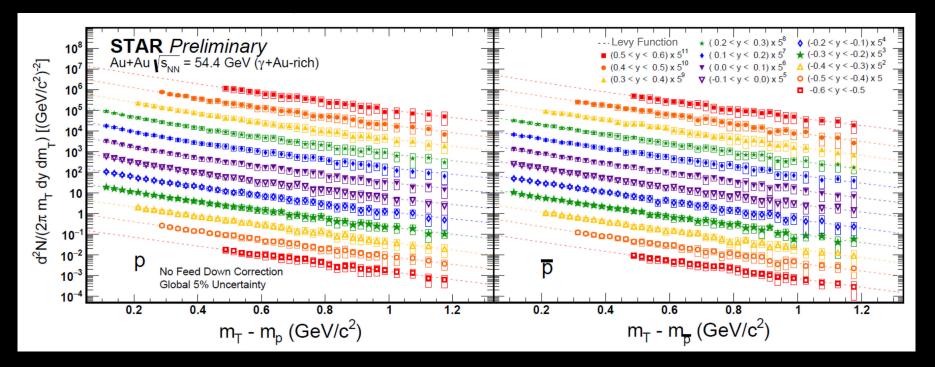
γ+Au events produce rapidity asymmetry that is expected from model predictions

Most photonuclear events have low multiplicity, consistent with very peripheral Au+Au collisions

Bulk features of γ+Au events are consistent with expectations from models

Results: Proton spectra in y+Au collisions relative to peripheral Au+Au

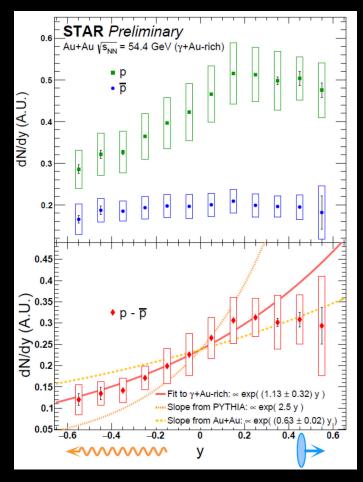
Double ratio: antiparticle/particle in (γ+Au)/(Au+Au)


p̄/p < 1 for pT ≤ 1 GeV/c

→ Indication of soft
baryon stopping in γ+Au
collisions

Not corrected for efficiency, but largely cancels in the double ratio

Baryon enhancement seen in γ+Au relative to Au+Au only at low momentum

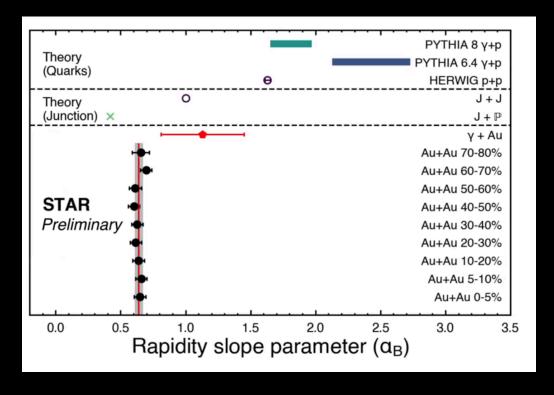

Results: Proton spectra in y+Au collisions at various rapidity bins

- Peripheral Au+Au contamination ~10% from baseline Au+Au (60-80%) measurements
- Measurement extrapolated to pT ~0 using Levy fits

Transverse momentum distribution of p and \overline{p} measured at various rapidities

Results: Rapidity distribution of net-proton in γ+Au events

p and net-proton dN/dy with y described by an exponential with slope: 1.13 ± 0.32


Anti-proton distribution is near constant with y

Compared Au+Au slope: $0.63 \pm 0.02 (2 < Y_{beam} < 5.5)$

Compared to PYTHIA, which does not include a baryon junction mechanism, predicts a slope of 2.5

Exponential slope of rapidity dependence of net-proton lower than PYTHIA predictions

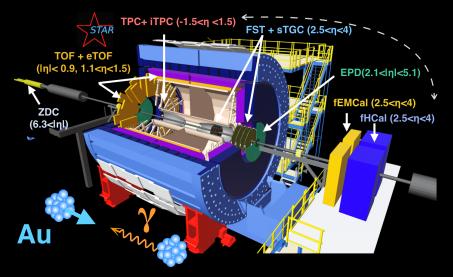
Rapidity slope of net-proton: Global data

X. Artru, M. Mekhfi, Nucl. Phys. A 532 (1991) 351 BRAHMS+NA49: Videbaek, 1st workshop on baryon dynamics, SBU 2024

Au+Au slope same for all centrality

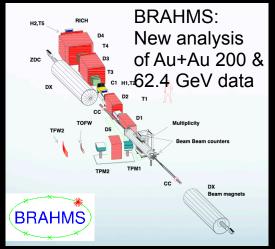
Slope γ +Au >~ Slope Au+Au:

Closer to the fit to BRAHMS + NA49 data slope to ~1 for Y_{beam} < 2 (NA49 energy ~17 GeV closer to γ +Au cm energy ~ 10 GeV)


Slope has Y_{beam} (energy) dependence $\alpha_B = \alpha_B (|y-Y_{beam}|)$

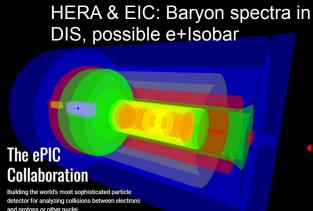
Consistent with Regge theory baryon-junction prediction but smaller than PYTHIA/HERWIG

Rapidity dependence of net-proton in γ+Au collisions compatible with junction picture


Future experiments on baryon carrier search

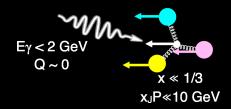
Huber, Klein, Videbaek, Magdy, 1st workshop on baryon dynamics, SBU 2024

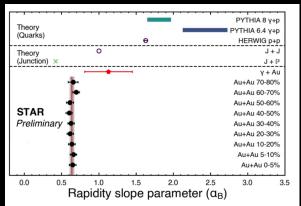
23-25
high statistics γ+Au
collisions using
Au+Au 200 GeV
UPC, p/d/He3+Au,
strange baryon
production

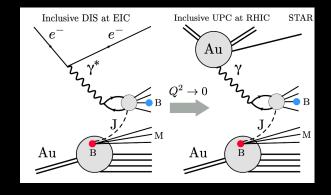

STAR: RHIC Run

JLab e+p, u-channel backward production

Backward Production




Summary


- Baryon number carrier and transport are of fundamental interest: Photon-induced processes are clean probes
- STAR and low- p_T PID capability & RHIC Au+Au 54.4 GeV UPC: inclusive γ +Au with low photons (E_{γ} < 2 GeV low stopping power)
- Significant net-proton in γ+Au at midrapidity: exponential rapidity slope compatible with prediction of Regge theory on baryon junction
- Au+Au global data: rapidity slope show no centrality dependence, flavor blind, lower than γ+Au for RHIC energy, compatible at NA49 energy
- Isobar data: less electric-charge transport than baryon transport
- Quark-based models fail to explain data

Multiple observations indicate baryon transport in high-energy collisions not compatible with valence quark as carriers of baryon number

Outlook: Future RHIC, EIC, other experiments can further probe baryon carrier and transport mechanisms with controlled photon kinematics

Recent dedicated workshop on baryon dynamics

https://indico.cfnssbu.physics.sunysb.edu/event/113/

Thanks