

Probe the partonic/hadronic matter with elliptic flow in STAR Beam Energy Scan

Xiaoping Zhang (*Tsinghua University*) For the STAR Collaboration

28th Winter Workshop on Nuclear Dynamics Dorado del Mar, Puerto Rico

Outline

- Introduction and motivation
- STAR detector and data analysis
- Elliptic flow (v_2) results and discussions
- Summary and outlook

Introduction to elliptic flow

 \succ Elliptic flow: initial spatial anisotropy \rightarrow final momentum anisotropy

- ✓ Characterized by v₂ coefficient of Fourier expansion of azimuthal particle distribution with respect to the reaction plane
- > Probe to the early collision dynamics
 - ✓ Conversion efficiency depends on degrees of thermalization,
 equation of state, degrees of freedom (partonic/hadronic), ...

Partonic collectivity at RHIC top energy

- Number-of-quark (NCQ) scaling approximately works at intermediate p_T (2-5 GeV/c)
- Similar v₂ of multi-strange particles (φ, Ω) as light hadrons, collectivity is developed at partonic stage

➢ Partonic degree of freedom → Deconfinement! STAR, Phys. Rev. Lett. 99, 112301 (2007); Nucl. Phys. A 830, 187c (2009)

"Turn off" QGP signal at lower energy?

Beam Energy Scan at STAR

Particle identification and v₂ analysis

- Time projection chamber (TPC) full azimuth, |η| < 1 dE/dx v.s. momentum
- Barrel Time-Of-Flight (TOF) full azimuth, $|\eta| < 1$ Particle flight time Clean separation of K, π up to $p_T = 1.6$ GeV/c
 - $v_2 = < \frac{\cos(2\varphi 2\psi_2)}{R} >$ R: event plane resolution
- TPC η -sub event plane for PID v_2 analysis, non-flow effects reduced

η-sub event plane method: STAR, Phys. Rev. C 77, 054901 (2008)

Particle reconstruction

- dE/dx+TOF: π , K, p and $\phi \rightarrow K^+ + K^-$ (invariant mass)
- S/B of ϕ meson significantly improved with additional TOF PID
- Weak decay particles (K_{S}^{0} , Λ , Ξ , Ω), secondary vertex + invariant mass 8

v₂ of charged hadrons @ 7.7, 11.5, 39 GeV

Different event plane detectors TPC (| η |<1) FTPC (2.5<| η |<4) BBC (3.3<| η |<5)
Different v₂ analysis method event plane, cumulant method

• Overall, good agreement

7.7, 11.5 GeV: less difference between v₂{2} and v₂{4}
 → non-flow, fluctuations
 STAR, CPOD 2011

v₂ of charged hadrons @ 7.7 – 2760 GeV

STAR, CPOD 2011 ALICE, Phys. Rev. Lett. 105 (2010) 252302 Comparison of differential v₂(p_T) over 2.6 orders of magnitudes in energy 2760/7.7 ~ 360

• Similar v₂(p_T) shape p_T = 2 - 4 GeV/c: almost same v₂(p_T) Differences increase at low p_T

Particle and anti-particle v_2 (π and K)

Particle and anti-particle v_2 (Proton and Λ)

- Proton: v₂(proton) > v₂(anti-proton)
 Difference increases with decreasing energy
- A: similar behavior

STAR, CPOD 2011

Particle and anti-particle v₂ difference

- Baryon and anti-baryon v₂ differences: ~10% at higher energies increase dramatically @ 7.7 and 11.5 GeV
- NCQ scaling between particles and antiparticles is broken at lower energies
- Chiral magnetic wave? Baryon transport? Hadronic potential? Hadronic interactions dominant?

Electric quadrupole moment of QGP?

- Chiral Magnetic Wave (CMW): interplay of chiral magnetic effect and chiral separation effect
- CMW induces a static electric quadrupole moment of QGP at finite baryon density
- Elliptic flow of positive hadrons < negative ones v₂(π⁺) < v₂(π⁻), calculated difference at √s = 11 GeV ~ up to 30% depending on the lifetime of the magnetic field
- Data: difference ~ 10% at 11.5 GeV
- Hongwei Ke's talk, "Charge asymmetry dependency of π⁺/π⁻ elliptic flow in Au+Au collisions at 200 GeV", Apr. 12, 11:00 AM 14

Y. Burnier et al., Phys. Rev. Lett. 107, 052303 (2011)

Hadronic potential?

- AMPT model including the mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles
- Trend is the same as in our data
- The magnitude is inconsistent at 7.7 and 11.5 GeV

J. Xu et al., arXiv:1201.3391

Baryon transport?

- Quark coalescence assumed
- v₂(transported quarks) > v₂(produced light quarks)
 v₂(produced strange quarks)
- $v_2(\pi^-) > v_2(\pi^+)$ $v_2(K^+) > v_2(K^-)$ $v_2(p) > v_2(\bar{p})$ $v_2(\Lambda) > v_2(\bar{\Lambda})$ Qualitatively consistent with data
- Weak p_T dependence
- Small \ meson v_2

J.C. Dunlop, M.A. Lisa, & P. Sorensen, Phys. Rev. C 84, 044914 (2011)

ϕ (*s* \overline{s}) meson v₂

200 GeV: TPC full event plane; 11.5 and 39 GeV, TPC η-sub event plane; statistical error only 17

More about ϕ meson

- K⁺K⁻ is not the main production channel in our interested region
- ϕ meson has small hadronic cross section. $\sigma(\phi N) \sim 10$ mb
- Small ϕ v₂ at hadronic phase expected
- $\sigma_{\pi N} \sim 2.6 \sigma_{\phi N} \qquad \sigma_{\Lambda N} \sim 3.5 \sigma_{\phi N}$ $\sigma_{KN} \sim 2.1 \sigma_{\phi N} \qquad \sigma_{NN} \sim 4 \sigma_{\phi N}$ • $\phi \operatorname{meson} R_{CP}(0-10\%/40-60\%)$ consistent with unity at 39 GeV, no suppression
- Decreasing partonic effect with decreasing beam energies

π⁺, K⁰_S, p, Λ and Ξ⁻ approximately follow one common curve
φ-mesons @ 11.5 GeV does not follow the trend of other hadrons. Mean deviation from pion distribution: 2.6 σ

NCQ scaling test $- v_2/n_q$ v.s. $(m_T - m_0)/n_q$

π⁺, K⁰_S, p, Λ and Ξ⁻ approximately follow one common curve
φ-mesons a 11.5 GeV does not follow the trend of other hadrons.

Summary and outlook

- ➤ Charged hadrons: consistent $v_2(p_T)$ from 7.7 GeV to 2.76 TeV for $p_T = 2 4$ GeV/c, differences increase at low p_T
- Relative difference of v₂ between particles and antiparticles increase with decreasing beam energies
 NCQ-scaling between particles and anti-particles is

broken at lower energies

Chiral magnetic wave? Baryon transport? Hadronic potential?

→ strange quark collectivity becomes weaker relative to light quarks

➤ Results at 19.6, 27 and 62.4 GeV are in preparation

Backup

Identified hadrons v₂ v.s. p_T

- Mass ordering holds at low p_T , except for ϕ -mesons
- φ-mesons v₂ @ 11.5 GeV is small compared to other hadrons

 v_2 v.s. m_T - m_0

- Meson ↔ Baryon splitting for particles @ 11.5 and 39 GeV Splitting is smaller @ 7.7 GeV

Light nuclei v₂

STAR, C. Jena, ICPAQGP 2010

- Light nuclei can be used to study nucleon coalescence
- Currently only ~10% of total statistics @ 39 GeV in light nuclei analysis

Why NCQ scaling may break at hadronic phase?

Multi-strange hadrons

- Small hadronic cross sections, freeze-out early
- > Small v₂ at hadronic stage
- NCQ scaling may break in hadronic dominated phase

Mass ordering violation for ϕ meson v₂?

- (a) ideal hydro: mass ordering for φ meson v₂
 (c) ideal hydro + hadronic rescatterings: violation of mass ordering for φ meson v₂ due to small hadronic cross section of φ
 Comparison of φ meson v₂ to proton v₂ is useful for
- understanding the effect of the hadronic phase 27