

Low- $p_T e^+e^-$ pair production in Au+Au collisions and exclusive J/ψ production in d+Au collisions at STAR

Xiaofeng Wang(王晓凤)

For the STAR Collaboration

Shandong University/Qufu Normal University

山东大学/曲阜师范大学

Xiaofeng Wang @Initial Stages 2021

Di-electron from Photon Interactions

- $v \approx c$ $v \approx c$
- The hadronic cocktail can describe the data for $p_T > 0.15 \text{GeV/c}$ in all three mass regions
- The observed excess is found to concentrate below $p_T \approx 0.15 \text{GeV/c}$

 Equivalent Photon Approximation (EPA):
 In a specific phase space, EM fields can be quantized as a flux of quasi-real photons

STAR

$\gamma\gamma \rightarrow e^+e^-$: Ultra-Peripheral vs. Peripheral

Characterize difference in spectra via $\sqrt{\langle P_{\perp}^2 angle}$		
$\sqrt{\langle P_{\perp}^2 angle}$ (MeV/c)	UPC Au+Au	60-80% Au+Au
Measured	38.1 ± 0.9	50.9 ± 2.5
QED	37.6	48.5

- Leading order QED calculation of $\gamma\gamma \rightarrow e^+e^-$ describes both spectra (±1 σ)
- STAR observes 4.8σ difference between UPC and 60-80% Au+Au collisions
- Proposed as a probe of trapped magnetic field or Coulomb scattering in QGP
- Di-electron measurement at the centrality of 80-100% can serve as a bridge between HIC and UPC $\gamma\gamma \rightarrow e^+e^-$ process

The Solenoid Tracker At RHIC (STAR)

- Excellent electron identification capability with the information from TPC and TOF
- High electron purity (95% in $n\sigma_e$ nonoverlapping area) sample with STAR PID

STAR

Mass Distribution in Low- p_T

- First di-electron measurement at the centrality of 80-100% at STAR
- · Significant enhanced di-electron yield compared to hadronic cocktail
- No vector meson is observed → forbidden for real photons with helicity ± 1

p_T Distribution

- Observed excess is concentrated below 0.2 GeV/c in 80-100% compared to the cocktail
- Similar p_T distribution of e^+e^- pairs to those of
 - Au+Au at $\sqrt{s_{NN}}$ = 200 GeV/c 60-80% centrality
 - ✓ Indication of $\gamma\gamma \rightarrow e^+e^-$ production

$\cos(4\Delta\phi)$ Modulations

- Lorentz contraction of EM fields \rightarrow Quasi-real photons should be linearly polarized ($\vec{E} \perp \vec{B} \perp \vec{k}$)
- Recently realized, there are $cos(4\Delta\phi)$ modulations in polarized $\gamma\gamma \rightarrow e^+e^-$ [1] [1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

STAR, ArXiv: 1910.12400

- Indication of $cos(4\Delta\phi)$ modulations in linearly polarized $\gamma\gamma \rightarrow e^+e^-$ process with a significance of 2σ (systematics needs to be studied)
 - \checkmark More statistics is needed to confirm the trend

• Cross section of J/ψ meson in photoproduction, with a **hard scale** imposed by its mass, is sensitive to the gluon density at the LO

$$\frac{d\sigma}{dt}(\gamma^* p \to \psi p) = \frac{\Gamma_{ee} M_{\psi}^3 \pi^3}{48\alpha} \frac{\alpha_s (\bar{Q}^2)^2}{\bar{Q}^8} [xg(x, \bar{Q}^2)]^2 \left(1 + \frac{Q^2}{M_{\psi}^2}\right)$$

 It's a powerful probe to study the gluon density and its distributions inside nucleons and nucleus, physics applications:

- $J/\psi \rightarrow e^+e^-$ pair are reconstructed using TPC for |y| < 1.0
- Zero Degree Calorimeter (ZDC) was used to detect neutrons from deuteron breakup, providing additional info about the physics process
- Au + d → J/ψ + Au' +X
 ✓ X = d' (coherent) or X = d', d' → p' + n' (coherent + Coulomb)
 ✓ X = p' + n' (elastic nucleon)
 ✓ X = p' + X or n' + X (nucleon dissoc.)

- Clear signal, roughly 300 J/ψ are reconstructed
- The UPC trigger used in analysis is unbiased with respect to the ZDC
- Au-going side has no neutron, stay intact!

Coherent, Incoherent calculated by H. Mantysaari and B. Schenke, (https://arxiv.org/pdf/1910.03297.pdf)

- Total data no selections on final-state of the deuteron breakups
- n-tagged data = total data ⊕ requirement of neutron at d-going ZDC
- The data is at $X_P \sim 0.01$ at STAR
 - X_P : longitudinal momentum fraction of the proton carried by the color-neutral "pomeron"

Coherent, Incoherent calculated by H. Mantysaari and B. Schenke, (https://arxiv.org/pdf/1910.03297.pdf)

Without fluctuations

- The data, despite large uncertainty,
 - Coherent: Hulthen and AV18 describes the data equally well. Expected to be dominant at low t
 - Incoherent: Qs/Shape fluctuation is found to describe the data better.
- ZDC n-tagged data: incoherent only at small t
- Separate coherent and incoherent process is extremely interesting but challenging, will be significantly improved at the EIC

- First di-electron measurement at the centrality of 80-100% at $\sqrt{s_{\rm NN}}$ = 54.4 GeV at STAR
 - ✓ Indication of $\gamma \gamma \rightarrow e^+ e^-$ process
- Indication of $cos(4\Delta\phi)$ modulations in linearly polarized $\gamma\gamma \rightarrow e^+e^-$ process, but more precise measurement is needed to improve the significance
- First measurement of J/ψ meson in photoproduction off deuteron in UPC
 - Data is well described by theoretical calculations using Hulthen/AV18 wave function for the coherent contribution along with incoherent contributions calculated using Qs/shape fluctuations
- Data with ZDC neutron tagging indicates incoherent contribution at low t

FAR

- First di-electron measurement at the centrality of 80-100% at $\sqrt{s_{NN}}$ = 54.4 GeV at STAR
 - ✓ Indication of $\gamma \gamma \rightarrow e^+ e^-$ process
- Indication of $cos(4\Delta\phi)$ modulations in linearly polarized $\gamma\gamma \rightarrow e^+e^-$ process, but more precise measurement is needed to improve the significance
- First measurement of J/ψ meson in photoproduction off deuteron in UPC
 - Data is well described by theoretical calculations using Hulthen/AV18 wave function for the coherent contribution along with incoherent contributions calculated using Qs/shape fluctuations
- Data with ZDC neutron tagging indicates incoherent contribution at low t Thanks for Your Attention

STAR

Backup

- A smooth e⁺e⁻ invariant mass distribution
- $\gamma \gamma \rightarrow e^+ e^-$: no vector meson production \longrightarrow forbidden for real photons with helicity ±1(i.e. 0 is forbidden)

Only statistical uncertainty is shown, green band is 1σ fit err

- Total data no selections on final-state of the deuteron breakups, only J/ψ at mid-rapidity with no other activity
- n-tagged data = total data + requirement of neutron at d-going ZDC
- Total fit has three components:
 ✓ Coherent contribution, assuming an
 - exponential function
 - ✓ Elastic nucleon (H1 proton data as shape)
 - ✓ Nucleon dissociative (H1 proton data as
 - shape)

(ref. Eur.Phys.J.C73 (2013) 6, 2466)

What to look forward?

- 1. More statistics in this case <u>absolutely helps</u> (a lot), esp at low *t*.
- 2. Higher energy || lower x || forward rapidity
 → sensitive to gluonic structure!

Low-x data should distinguish models!

• The left polt is, in every momentum bin, the pure hadron samples $(\pi/K/p)$ mean $n\sigma_e$ distribution. We can found, for the electron mean $n\sigma_e$, it have overlap region with other hadron samples .for example, red circle is the electron and kaon $n\sigma_e$ overlap range.

In nσ_e overlap range, it is hard to identify
 electron. So in this range, the electron
 purity is lower than non-overlap range.