Breit-Wheeler Process in U+U Ultra Peripheral Collisions

Coherent Photonuclear Production of ϕ Meson in Au+Au Ultra Peripheral Collisions at STAR

Xihe Han, for STAR collaboration
The Ohio State University

Breit-Wheeler Pair Production in Strong Electromagnetic Fields

Ultra Peripheral Collision

- Ultra-Peripheral Collisions (UPC): nuclei pass each other at impact parameters > 2R.
- Lorentz-contracted EM fields create intense transverse photon flux
- Photons treated as quasi-real (Weizsäcker–Williams approximation)

- Breit-Wheeler Process $\gamma\gamma \to e^+e^-$ in vacuum via real photon fusion
 - Enabled by intense EM fields (Z² scaling) in heavy ion UPC
 - Occurs when field strength exceeds Schwinger limit: $E_c \equiv \frac{m_e c^2}{e \lambda_c} \approx 1.3 \cdot 10^{16} \, \mathrm{V \, cm^{-1}}$
 - Very low pair transverse momentum of the e⁺e⁻ pair.

t and u channel of BW Process (Brandenburg et al., 2023)

Mapping Nuclear Geometry via the Breit–Wheeler Process

- EM Fields Reflect Nuclear Geometry
 - UPC ions generate coherent EM fields shaped by the nuclear charge distribution.
 - As a first approximation, one can use a Woods-Saxon distribution to estimate the nuclear charge distribution: $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r R_{WS}}{d})}$
- BW process is Sensitive to EM Field Profile
 - The photon k_T spectrum depends on the nuclear form factor $F(k) \equiv \int d^3r \ e^{i \ k \cdot r} \ \rho(r)$.
 - The lepton pair inherits the summed k_T of the photons: $p_T = k_{T1} + k_{T2}$.
 - Vary R_{WS} , d in $\rho(r) \rightarrow$ predict p_T spectrum \rightarrow compared to data.
 - Provides a clean **QED-based mapping** of EM field geometry in heavy nuclei.
- STAR has extracted R_{WS} and skin depth d for gold nuclei using BW p_T spectra.

Adam et al. (2021) Best fit: $R = 6.7 \pm 0.2 \text{ fm}, a = 0.2 \pm 0.2 \text{ fm}$

Breit–Wheeler Measurement in Uranium Collisions

- Breit-Wheller UPC analysis has been published in Au+Au data, but as not been published in U+U.
- Au is an approximately spherical nucleus, so we have a spherically symmetric field. This is not the case for uranium.
- QED calculations do **not** use a 3D form factor that accounts for the nucleus deformation.
- Uranium has a prolate nucleus, and we want to test sensitivity to potential modifications in the BW cross section shape.

The STAR Detector and UPC

UPC exclusive production signatures:

Minimal hadronic break-up Forward rapidity gap

ZDC (Zero Degree Calorimeter): Detects forward neutrons from **Coulomb dissociation**, allowing classification of nuclear breakup (e.g., 0n0n, 1n1n) and triggering on UPC events.

BBC (Beam-Beam Counter): Vetoes hadronic interactions by requiring **no forward activity**, ensuring the exclusivity of UPC events.

Electron Pair Selection

- Triggers and UPC Event Selections
 - Run 12 U+U at $\sqrt{s_{NN}}$ = 193 GeV
 - UPC Main, ZDC coincidence
 - $|V_z|$ < 100 cm
 - gRefMult <=4
- Track Quality Cuts
 - Track $p_T > 0.2 \text{ GeV}$
 - NHitsDedx > 15 & NHitsFit > 10
 - DCA < 1

- PID and Signal Candidate
 - $\chi_{ee}^2 = n\sigma_{e1}^2 + n\sigma_{e2}^2 < 10$
 - $\chi^2_{\pi\pi} > 3 \chi^2_{ee}$ pions are primary source of background
 - Δ ΔTOF < 0.5ns

Electron Pair Signal Extraction

Excess production at low pair p_T

Broad continuum in pair invariant mass

Differential Cross Sections of Breit–Wheeler Process in U+U UPC

- QED accurately describes both the mass and rapidity differential cross section and the photon energy spectrum, as evidenced by the observed mass/rapidity distribution shape.
- STARLight: hard sphere geometry.

Takeaways: Nuclear Shape Effects in Photon-Photon Collisions

- Spherical uranium (semi-major or semi-minor radius) fails to describe the measured p_T distribution.
 - p_T spectrum is sensitive to nuclear deformation.
- Accurate nuclear shape modeling is essential for photon-photon processes.

Cross Section Ratio, U+U 193 GeV / Au+Au 200 GeV

2.4

1.8

1.6

1.4

U+U 193 GeV / Au+Au 200 GeV

QED Curve Ratio, U+U(XnXn)/Au+Au(XnXn)

O 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P_{T.} (GeV/c)

Higher-order azimuthal correlations like $\cos(n\Delta\phi)$ in U+U collisions may exhibit enhanced sensitivity to nuclear deformation compared to the p_T spectrum alone.

Exclusive Vector Meson Production in UPC

- $\gamma A \rightarrow VA$ process
 - A quasi-real photon from the Lorentz-contracted EM field fluctuates into a quark–antiquark pair.
 - This color dipole interacts with the nucleus via a colorless 2-gluon exchange (Pomeron).
 - The exclusive interaction produces a vector meson: ρ , ϕ , J/ψ , Υ , ...

Coherent Production:	Incoherent Production:
Color dipole couples to entire nucleus	Color dipole couples to individual nucleon
Low vector meson transverse momentum ~50MeV	Vector Meson transverse momentum ~ 400MeV
Probe the averaged gluon density	Probe local gluon density fluctuation

UPC Coherent/Incoherent Photoproduction of ρ , J/ψ has bee measured at STAR.

We present the first measurement of UPC ϕ photoproduction at STAR.

We measure ϕ to the channel $\phi \to K^+K^-$.

This measurement pushes STAR's tracking limit as the transverse momentum of the daughter kaon is ~ 100MeV.

The iTPC Upgrade: Enabling Low- p_T Kaon Tracking at STAR

low-p_T kaons (~100 MeV), which is essential for

This analysis uses the first fully operational dataset from the upgraded iTPC.

Vector Meson as a Probe for Gluon Saturation

Gluon Saturation:

- VM production is mediated by photon-gluon fusion, making it directly sensitive to the gluon distribution in the target nucleus.
- At small Bjorken-x, the gluon density grows rapidly, and non-linear effects (gluon recombination) set in — VM production can probe this regime.
- **Suppression or modification** of cross sections (vs. linear QCD expectations) may signal the onset of gluon saturation.
- ϕ vs. other vector mesons:
 - Larger dipole size than the J/ψ which enhances ϕ 's sensitivity to saturation effects.
 - Larger invariant mass (1019 MeV) compared to the ρ^0 meson (770 MeV), enables more reliable perturbative QCD calculations.

(Aaron et al., 2010) electron-proton DIS nucleon structure PDF at HERA

Event Selection and Signal Extraction

- Event Selection
 - Quality Cuts:
 - |Vz| < 50
 - UPC Selection
 - BBC Veto

- Pair selection
 - Kaon Selection
 - TPC $\frac{dE}{dx}$, $\chi_{KK}^2 \equiv N\sigma_{k1}^2 + N\sigma_{k2}^2 < 20$
 - Kinematics Selection
 - K^+K^- Pair p_T < 150 MeV- isolate coherent pair

Number of Total Coherent Pair: 79

Differential Cross Section Preliminary Result

$$\sigma = \frac{N}{L_{\text{total}} \cdot \epsilon_{\text{tracking}} \cdot \epsilon_{\text{PID}} \cdot \epsilon_{\text{kinematic cut}} \cdot \epsilon_{\text{BBC Veto}} \cdot \epsilon_{\text{Vz cut}} \cdot \epsilon_{\text{Trigger}}}$$

$$N = 79$$
, $L_{total} = 13.6 \,\mu b^{-1}$

$$W_{\gamma N}|_{\gamma=0} \approx 14.3 \text{ GeV}, x \equiv \frac{M_V^2}{W_{\gamma N}^2} \approx 0.005$$

Cross Section Vector Meson Mass Dependence

- Future comparisons with shadowing and saturation models will test the mass dependence of coherent cross sections and probe nuclear gluon distributions at different scales.
- Such comparisons can help isolate nuclear effects—like shadowing or saturation—across various vector mesons, offering constraints on small-x dynamics and nuclear PDFs.

Summary and Outlook

- \checkmark First differential cross section measurement of UPC photonuclear ϕ meson at STAR.
- New data production at STAR may yield \sim 1000× more coherent ϕ events:
 - More differential measurements:
 - ZDC class dependence, resolving photon energy ambiguity
 - Precise transverse momentum spectrum
- Incoherent ϕ measurements:
 - Sensitive to gluon fluctuations and hotspots
 - Ratio of coherent/incoherent yields: key observable for gluon saturation dynamics

Citations

- Brandenburg, J. D., Seger, J., Xu, Z., & Zha, W. (2023). Report on progress in physics: Observation of the breit–wheeler process and vacuum birefringence in heavy-ion collisions. *Reports on Progress in Physics*, 86(8), 083901. https://doi.org/10.1088/1361-6633/acdae4
- Adam, J., Adamczyk, L., Adams, J. R., Adkins, J. K., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alekseev, I., Anderson, D. M., Aparin, A., Aschenauer, E. C., Ashraf, M. U., Atetalla, F. G., Attri, A., Averichev, G. S., Bairathi, V., Barish, K., Behera, A., Bellwied, R., . . . Zyzak, M. (2021). Measurement of e+e-Momentum and Angular Distributions from Linearly Polarized Photon Collisions. *Physical Review Letters*, 127(5). https://doi.org/10.1103/physrevlett.127.052302
- Aaron, F. D., Abramowicz, H., Abt, I., Adamczyk, L., Adamus, M., Al-daya Martin, M., Alexa, C., Andreev, V., Antonelli, S., Antonioli, P., Antonov, A., Antunovic, B., Arneodo, M., Aushev, V., Bachynska, O., Backovic, S., Baghdasaryan, A., Bamberger, A., Barakbaev, A. N., & Barbagli, G. (2010). Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA. *Journal of High Energy Physics*, 2010(1). https://doi.org/10.1007/jhep01(2010)109
- Abdulhamid, M. I., et al. "Observation of Strong Nuclear Suppression in Exclusive J/ψ Photoproduction in Au+Au Ultraperipheral Collisions at RHIC."
 Physical Review Letters, vol. 133, no. 5, 31 July 2024, https://doi.org/10.1103/physrevlett.133.052301. Accessed 2 June 2025.