Breit-Wheeler Process in U+U Ultra Peripheral Collisions

&

Coherent Photonuclear Production of ϕ Meson in Au+Au Ultra Peripheral Collisions at STAR

Xihe Han, for STAR collaboration
The Ohio State University

Breit-Wheeler Pair Production in Strong Electromagnetic Fields

Ultra Peripheral Collision

- Ultra-Peripheral Collisions (UPC): nuclei pass each other at impact parameters > 2R.
- Lorentz-contracted EM fields create intense transverse photon flux
- Photons treated as quasi-real (Weizsäcker–Williams approximation)

- Breit-Wheeler Process $\gamma\gamma \to e^+e^-$ in vacuum via real photon fusion
 - Enabled by **intense EM fields** (Z² scaling) in heavy ion UPC
 - Occurs when field strength exceeds Schwinger limit: $E_c \equiv \frac{m_e c^2}{e \lambda_c} \approx 1.3 \cdot 10^{16} \, \mathrm{V \, cm^{-1}}$
 - Very low pair transverse momentum of the e⁺e⁻ pair.

t and u channel of BW Process (Brandenburg et al., REP. Prog. Phys, 2023)

Mapping Nuclear Geometry via the Breit–Wheeler Process

- EM Fields Reflect Nuclear Geometry
 - UPC ions generate coherent EM fields shaped by the nuclear charge distribution.
 - As a first approximation, one can use a spherical Woods-Saxon distribution to estimate the nuclear charge distribution: $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r R_{WS})}{d})}$
- BW process is Sensitive to EM Field Profile
 - The photon k_T spectrum depends on the nuclear form factor $F(k) \equiv \int d^3r \ e^{i \ k \cdot r} \ \rho(r)$.
 - The lepton pair inherits the summed k_T of the photons: $p_T = k_{T1} + k_{T2}$.
 - Vary R_{WS} , d in $\rho(r) \rightarrow$ predict p_T spectrum \rightarrow compared to data.
 - Provides a clean QED-based mapping of EM field geometry in heavy nuclei.
- ullet STAR has extracted R_{WS} and skin depth d for gold nuclei using BW p_T spectra.

STAR, *PRL* (2021) Best fit: $R = 6.7 \pm 0.2 \text{ fm}, d = 0.2 \pm 0.2 \text{ fm}$

Breit–Wheeler Measurement in Uranium Collisions

- Breit-Wheeler UPC analysis has been measured in Au+Au data, but has **not** been measured in U+U.
- Au is an **approximately spherical nucleus**, so we have a spherically symmetric field. This is **not** the case for uranium.
- QED calculations do **not** use a 3D form factor that accounts for the nucleus deformation.
- Uranium has a prolate nucleus, and we want to test sensitivity to potential modifications in the BW cross section shape.

The STAR Detector and UPC

UPC exclusive production signatures:

Minimal hadronic break-up

Forward rapidity gap

ZDC (Zero Degree Calorimeter): Detects forward neutrons from **Coulomb dissociation**, allowing classification of nuclear breakup (e.g., 0n0n, 1n1n) and triggering on UPC events.

BBC (Beam-Beam Counter): Vetoes hadronic interactions by requiring **no forward activity**, ensuring the exclusivity of UPC events.

Electron Pair Selection

- Triggers and UPC Event Selections
 - Run 12 U+U at $\sqrt{s_{NN}}$ = 193 GeV
 - UPC Main, ZDC coincidence
 - $|V_z|$ < 100 cm
 - gRefMult <=4
- Track Quality Cuts
 - Track $p_T > 0.2$ GeV/c
 - NHitsDedx > 15
 - DCA < 1cm

- PID and Signal Candidate
 - $\chi_{ee}^2 = n\sigma_{e1}^2 + n\sigma_{e2}^2 < 10$
 - $\chi^2_{\pi\pi} > 3 \chi^2_{ee}$ pions are primary source of background
 - Δ ΔTOF < 0.5ns

Electron Pair Signal Extraction

Excess production at low pair p_T

Broad continuum in pair invariant mass

Differential Cross Sections of Breit–Wheeler Process in U+U UPC

 QED accurately describes both the mass and rapidity differential cross section and the photon energy spectrum from data.

STARLight: hard sphere geometry.

QED: orientation-averaged deformed Woods-Saxon, radius=6.9fm, skin depth= 0.42fm, β_2 =0.265

Takeaways: Nuclear Shape Effects in Photon-Photon Collisions

 Accurate nuclear shape modeling is essential for photon-photon processes.

OED Calculation For Uranium:

- 1. Uses charge distribution with quadrupole deformation $\rho(r,\theta) = \frac{\rho_0}{1 + \exp(\frac{r R_W S(1 + \beta_2 Y_{20}(\theta))}{d})}.$
- 2. The Charge distribution is then **orientation- averaged:** $\rho(r,\theta) \rightarrow \rho(r)$.
- 3. For now, we keep skin depth d=0.42fm, $\beta_2=0.265$, $b\in[2R_{WS},200$ fm] and scan the nuclear charge radius.
- 4. The best-fit parameter (r= 6.9fm) is obtained from Q.Y. Shou et al. *PRB* (2015).

Cross Section Ratio, U+U 193 GeV / Au+Au 200 GeV

STAR Preliminary

2.2

Uranium QED Curve Parameters: r = 6.9 fm, d = 0.42fm, β₂ = 0.265

Gold QED Curve Parameters: r = 6.7fm, d = 0.42fm, β₂ = 0

1.8

1.4

1.4

1.2

1

0.8

0.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P_{T_m} (GeV/c)

Higher-order azimuthal correlations like $\cos(n\Delta\phi)$ in U+U collisions may exhibit enhanced sensitivity to nuclear deformation compared to the p_T spectrum alone.

Exclusive Vector Meson Production in UPC

- $\gamma A \rightarrow VA$ process
 - A quasi-real photon from the Lorentz-contracted EM field fluctuates into a quark–antiquark pair.
 - This color dipole interacts with the nucleus via a colorless 2-gluon exchange (Pomeron).
 - The exclusive interaction produces a vector meson: ρ , ϕ , J/ψ , Υ , ...

Coherent Production:	Incoherent Production:
Color dipole couples to entire nucleus	Color dipole couples to individual nucleon
Low vector meson transverse momentum ~50MeV	Vector Meson transverse momentum ~ 400MeV
Probe the averaged gluon density	Probe local gluon density fluctuation

We present the first measurement of UPC ϕ photoproduction at STAR via $\phi \to K^+K^-$.

The iTPC Upgrade: Enabling Low- p_T Kaon Tracking at STAR

Vector Meson as a Probe for Gluon Saturation

Gluon Saturation:

- VM production is mediated by photon-gluon fusion, making it directly sensitive to the gluon distribution in the target nucleus.
- At small Bjorken-x, the gluon density grows rapidly, and non-linear effects set in VM production can probe this regime.
- **Suppression or modification** of cross sections may signal the onset of gluon saturation.
- $m{\cdot}$ ϕ vs. other vector mesons:
 - Larger dipole size than the J/ψ which enhances ϕ 's sensitivity to saturation effects.
 - Larger invariant mass (1019 MeV) compared to the ρ^0 meson (770 MeV), enables more reliable perturbative QCD calculations.

H1 and ZEUS, JHEP (2010) electron-proton DIS nucleon structure PDF at HERA

Event Selection and Signal Extraction

- Event Selection
 - Quality Cuts:
 - |Vz| < 50cm
 - UPC Selection
 - BBC Veto

- Pair selection
 - Kaon Selection
 - TPC $\frac{dE}{dx}$, $\chi_{KK}^2 \equiv N\sigma_{k1}^2 + N\sigma_{k2}^2 < 20$
 - Kinematics Selection
 - K^+K^- Pair p_T < 150 MeV/c- isolate coherent pair

Number of Total Coherent Pair: 79

STARLight distributions are normalized to have the same integral value as data. Reconstructed STARLight distributions shown (STAR's acceptance).

Differential Cross Section Preliminary Result

$$\sigma = \frac{N}{L_{\text{int}} \cdot \epsilon_{\text{tracking}} \cdot \epsilon_{\text{PID}} \cdot \epsilon_{\text{kinematic cut}} \cdot \epsilon_{\text{BBC Veto}} \cdot \epsilon_{\text{Vz cut}} \cdot \epsilon_{\text{Trigger}}}$$

$$|W_{\gamma N}|_{y=0} \approx 14.3 \text{ GeV}, x \equiv \frac{M_V^2}{W_{\gamma N}^2} \approx 0.005$$

$$N = 79$$
, $L_{\rm int} = 13.6 \,\mu b^{-1}$

STARLight distributions are shown directly from Monte Carlo output.

Cross Section Vector Meson Mass Dependence

 Future comparisons with shadowing and saturation models will test the mass dependence of coherent cross sections and probe nuclear gluon distributions at different scales.

Summary and Outlook

- First differential cross section measurement of UPC photonuclear ϕ meson at STAR.
 - Future work will compare the measured ϕ meson cross section with theoretical predictions for vector mesons of varying masses to explore mass-dependent nuclear effects.
- Data from Run23 at STAR is expected to yield \sim 1000 times more coherent ϕ events:
 - More differential measurements:
 - ZDC class dependence, resolving photon energy ambiguity
 - Precise transverse momentum spectrum
- Incoherent ϕ measurements:
 - Sensitive to gluon fluctuations and hotspots
 - Ratio of coherent/incoherent yields: key observable for gluon saturation dynamics

Citations

- J.D. Brandenburg et al., Rep. Prog. Phys. 86 (2023) 083901, https://doi.org/10.1088/1361-6633/acdae4
- STAR Collaboration, J. Adam et al., Phys. Rev. Lett. 127 (2021) 052302, https://doi.org/10.1103/PhysRevLett.127.052302
- **H1 Collaboration**, F.D. Aaron *et al.*, *JHEP* **01** (2010) 109, https://doi.org/10.1007/JHEP01(2010)109
- STAR Collaboration, M.I. Abdulhamid et al., Phys. Rev. Lett. 133 (2024) 052301, https://doi.org/10.1103/PhysRevLett.133.052301
- Q.Y. Shou et al., Phys. Lett. B 749 (2015) 215, https://doi.org/10.1016/j.physletb.2015.07.078

Back-up

Full rapidity results

