XXIII International Workshop on DIS and Related Subjects

Measurements of Open Heavy Flavor Production in Semi-Leptonic Channels at STAR

Zhenyu Ye for STAR collaboration 1. University of Illinois at Chicago 2. Central China Normal University

Outline

- Introduction
- Non-photonic Electron Measurements
- Prospects of Open HF studies
- Summary

Relativistic Heavy Ion Collider

STAR Detector (2012)

Why Heavy Flavor?

- HF quarks (b, c) are produced primarily in initial hard scatterings, and are exposed to the evolution of the hot nuclear matter created in heavy ion collisions.
- Au+Au, Cu+Cu, U+U, …
 - How does a parton lose its energy in the QGP? $\Delta E_a > \Delta E_a > \Delta E_c > \Delta E_b?$
 - Using the HF as a probe to study properties of the QGP and their dependence on system size, energy, ...

hadronic phase and freeze-out

Why Heavy Flavor?

- HF quarks are produced primarily in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U, ...
 - How does a parton lose its energy in the QGP? $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$?
 - Using the HF as a probe to study properties of the QGP and their dependence on system size, energy, ...
- p+p
 - Test of pQCD and Reference for studies of the QGP
- p+Au, d+Au
 - Cold Nuclear Matter effects (shadowing, CGC, Cronin effect, ...)

Heavy Flavor Production and Decay

Semi-leptonic channel:

- Single e[±] with background subtraction estimated from MC+data
- Larger branching ratio; online trigger on high p_T charged leptons
- No direct access to the kinematics of the original charm hadrons; Contribution from charm and bottom

Hadronic channel:

- Fully reconstructed open charm hadrons with background estimated from data
- Smaller branching ratio; no direct trigger online; large background contribution w/o good secondary vertex measurement

Non-Photonic Electron Measurement

Non-Photonic Electron Measurement

 $N(npe) = N(inc) \cdot \epsilon_{purity} - N(pho)/\epsilon_{pho}$

STAR: PRD 83, 052006 (2011)

Non-Photonic Electron Production – p+p (200 GeV) –

D->e and B->e extracted from e-h/D⁰ correlation, consistent with pQCD calculations

Non-Photonic Electron Production – p+p (200 GeV) –

D->e and B->e extracted from e-h/D⁰ correlation, consistent with pQCD calculations

Non-Photonic Electron Production – p+p (200 GeV) –

New STAR results have improved uncertainties and wider $\ensuremath{p_{T}}$ coverage

Non-Photonic Electron Production – Au+Au –

Non-Photonic Electron Production – Au+Au (200 GeV) –

Data tends to disfavor model with radiative energy loss only. New p+p results can further constrain models.

Non-Photonic Electron Production – Au+Au (200 GeV) –

Significant non-zero NPE v_2 at low p_T : is it from coalescence with light quark and/or charm quark flow?

Non-Photonic Electron Production – Au+Au (62.4 and 39 GeV) –

Significant v_2 at 200 GeV, v_2 compatible with zero at 62.4 and 39 GeV.

STAR Experiment (2014+)

Heavy Flavor Tracker for 2014+

- 2 layers of thin silicon pixel (MAPS): 360M pixels, 20x20µm pitch, 0.4-0.6%X₀/layer,
- 2 layers of silicon strip detectors: fast readout, bridging TPC and PXL

1.4 p (GeV/c) N_{bin} scaling \mathbb{R}_{CP} N_{part} scaling 0.2 IB minimum bias TPC+HFT 0.1 1 nb⁻¹ L w/ HT trigger 2 6 4 Transverse Momentum p_{τ} (GeV/c)

Will achieve unprecedented precision to study QGP separately with B and D

Heavy Flavor Tracker for 2014+

Muon Telescope Detector for 2014+

e-muon

- Multigap Resistive Plate Chamber, avalanche mode
- Acceptance: 45% at |η|<0.5, covers the magnet iron bars

Summary and Outlook

- Open charm and bottom production measured in 200 GeV p+p collisions consistent with FONLL calculations within uncertainties.
- Strong suppression observed for NPE in 200 GeV Au+Au collisions but not in 62 GeV Au+Au collisions. Significant azimuthal anisotropy observed for NPE in 200 GeV Au+Au collisions, but not in 62 or 39 GeV Au+Au collisions.
- New detectors take data starting in 2014 for HF physics: precise measurements down to low p_T to study how heavy flavor quarks interact with the hot nuclear medium, and the medium properties.

