

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects

Santiago de Compostela, 2–6 May 2022

STAR Forward Upgrade

Zhenyu Ye for the STAR Collaboration University of Illinois at Chicago

STAR Experiment with Mid-rapidity Detectors

- Tracking, Calorimetry, PID Solenoidal magnet: $B_z=0.5 T$ TPC: $|\eta| < 1.5$ TOF: $-1.5 < \eta < 0.9$ EMC: $-1 < \eta < 2$ MTD: $|\eta| < 0.5$
- **MB trigger, luminosity** BBC: $3.3 < |\eta| < 5$ VPD: $4.2 < |\eta| < 5$ ZDC: $6.5 < |\eta|$

pol. p+p @ $\sqrt{s} = 200/510 \text{ GeV}$

- proton spin structure
- perturbative QCD

$p(d)+A @ \sqrt{s_{NN}} = 200 \text{ GeV}$

- gluon saturation
- initial conditions
- diffractive interactions

A+A (a) $\sqrt{s_{NN}} = 200 \text{ GeV}$

- QGP medium properties
- QCD in hot and dense medium

A+A (a) $\sqrt{s_{NN}} = 3-62 \text{ GeV}$

- search for the critical point
- chiral symmetry restoration

5/4/2022, DIS 2022 @ Santiago de Compostela, Spain

STAR Forward Upgrade

Rapidity coverage:

 $2.5 < \eta < 4$ (similar to EIC hadron endcap)

Goal:

Charge separation; e, γ and π^0 identification

Components:

Forward Silicon Tracker (FST) Forward sTGC Tracker (FTT) EM Calorimeter (ECal) Hadronic Calorimeter (HCal)

Requirements:

Detector	pp and pA	AA
ECal	$\sim 10\%/\sqrt{E}$	$\sim 20\%/\sqrt{E}$
HCal	$\sim 50\%/\sqrt{E} + 10\%$	-
Tracking	charge separation, photon suppression	$\delta p_T / p_T \sim 20 - 30\%$ for 0.2< p_T <2 GeV/c

STAR Forward Upgrade

p+p@510 GeV (2022), p+p/Au @200 GeV (2024)

- Sivers asymmetries for hadrons, (tagged) jets
- Gluon PDFs in nuclei: R_{pA} for direct photon and DY
- Gluon saturation: di-hadron, γ +jets, ...

Au+Au@200 GeV (2023/2025)

- Temperature dependence of viscosity through flow harmonics up to $\eta \sim 4$
- Initial conditions through longitudinal decorrelation
- Global Λ polarization rapidity dependence

Observables:

- Charged and neutral hadrons
- Electrons and photons
- Λ hyperons
- Inclusive jets and di-jets
- Mid-forward and forward-forward rapidity correlations

STAR Forward Silicon Tracker (FST)

- 3 Silicon disks: at 152, 165, and 179 cm from IP
- ⇒ Built on successful experience with STAR Intermediate Silicon Tracker (IST), reuse IST DAQ and cooling system
- Locate inside STAR TPC cone
- Single-sided double-metal mini-strip sensors Granularity: fine in φ and coarse in R Si sensors from Hamamatsu
- Frontend readout: APV25
- Material budget: ~1% per disk

Each module splits into two regions

- Inner-radius region: 5<R<16.5 cm
 - 1 Kapton flexible hybrid
 - 1 Si sensor: $128 \times 4 \ (\phi \times R)$ strips
 - 4 APV chips
- Outer-radius region: 16.5<R<28 cm
 - 1 Kapton flexible hybrid
 - 2 Si sensors: $128 \times 4 (\phi \times R)$ strips
 - 4 APV chips

Mechanical structure is made of

- PEEK (main structure, tube holder)
- Stainless steel (cooling tube)
- Aluminum (heat sinks)

Module assembly is done in two steps

- Gluing inner/outer hybrids and mechanical structures together
- Mount/wire-bond APVs and Silicon sensors on hybrids

STAR FST Installation

FST Installation completed on 08/13/2021

Zhenyu Ye for STAR Collaboration

STAR FST Operations in Run22

Operation HV: 140V for inner sensor and 160V for outer sensors Cooling system refilled every ~4 weeks

5/4/2022, DIS 2022 @ Santiago de Compostela, Spain

Zhenyu Ye for STAR Collaboration

STAR Forward sTGC Tracker (FTT)

4 sTGC stations: at 307, 325, 343 and 361 cm from IP => Following ATLAS design

- Locate inside STAR magnet pole tip opening Inhomogeneous magnetic field
- 4 quadrants double sided sTGC => 1 layer Diagonal strips to suppress ghost hits
- Position resolution: $\sim 100 \ \mu m$
- Frontend readout: VMM-chips
- Material budget: ~0.5% per layer

- Anode (HV): 50 μm gold-plated tungsten wires held at a potential of ~2900 V
- Cathode (Ground): graphite-epoxy mixture with a typical surface resistivity of 100 to 200 kΩ sprayed on G-10
- Readout: Small copper strips,
 perpendicular to anode wires, behind
 the cathode
- Working gas: n-Pentane+CO₂ = 45:55% by volume
 - Extreme care needed for the highly flammable n-pentane (C5H12)
 - Flash point -49°C; explosive limits 1.5–7.8%.
 - Boiling point of 36.1°C further complicates things

STAR FTT Installation

STAR FTT Operations in Run22

- Operation HV: 1500 V for standby and 3000 V for data taking
- Safety and gas mixing is automated through interlock logic
- Refill pentane, every three weeks by experts
- CO₂ change every two months by experts
 - Backed up by reserve tank online—no run out

STAR Forward Tracking System in Run22

Both FST and FTT were successfully commissioned and took data in Run22 (12/2021-4/2022). Preliminary tracking from FTT is promising

5/4/2022, DIS 2022 @ Santiago de Compostela, Spain

Zhenyu Ye for STAR Collaboration

STAR Forward Calorimeter System

Entire FCS (ECal + HCal + Electronics) was installed in 2020 and commissioned in Run21

- Extensive running with Au+Au at $\sqrt{s_{NN}} = 7.7 \text{ GeV}$
- Brief runs with O+O and d+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Location: 7 m from the IP on the "FMS platform" Readout: SiPMs

- Used in Trigger
- Split in 2 movable halves inside and outside of ring
- Slightly projective

ECal: reuse PHENIX PbSC calorimeter

1496 channels: $5.52 \times 5.52 \times 33 \text{ cm}^3$ 66 sampling cells with 1.5 mm Pb/4 mm Sc 36 wavelength shifting fibers per cell 18 X₀; 0.85 λ

replaced PMTs with SiPM readout

HCal: new Fe/Sc (20mm/3 mm) sandwich

520 readout channels: 10 x 10 x 84 cm³ $\sim 4.5 \lambda$

Uses same SiPM readout as Ecal

In close collaboration with EIC R&D

Preshower: use STAR EPD

Split signals, using FCS readout & trigger boards

STAR FCS Assembly

STAR FCS Commission in Run21

During Run21:

- Exercised the on-line data quality monitoring, and slow controls
- Off-line software and Monte Carlo also in place
- Trigger system fully commissioned
- System fully ready on Day-1 of Run 22

FCS event display in Run22 p+p 510GeV

STAR FCS Performance in Run22

FCS was successfully commissioned in Run21 and took data in Run22 FCS performance is as expected

Summary and Outlook

- Despite of COVID, all the new STAR forward detectors were installed and commissioned on time and taking data in p+p collisions at 510 GeV in 2022. Thanks to all that are involved.
- Explore new territories of cold and hot QCD physics with STAR forward detectors in Au+Au (2023&25) and p+p & p+Au (2024) collisions at 200 GeV.

5/4/2022, DIS 2022 @ Santiago de Compostela, Spain

STAR Forward Upgrade Institutions

STAR

Dedicated personnel for each subsystem

and the STAR collaboration, which stands enthusiastically behind the upgrade

Constrain Transversity with Forward Upgrade

Transversity at small and large x and the tensor charge better constrained with forward upgrade

Study Gluon Saturation with Forward Upgrade

	DIS and DY	SIDIS	hadron in pA	photon-jet in pA	Dijet in DIS	Dijet in pA
$G^{(1)}$ (WW)	×	×	×	×	\checkmark	\checkmark
$G^{(2)}$ (dipole)	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark

pp and pA collisions

- different gluon distributions
- rigorous test of theory predictions
- universality for different probes
- evolution of Q_s^2 with A and x

jet-hadron / jet-photon correlations

in 2023 pAu and pAl

Study QGP in Au+Au Collisions with Forward Upgrade

EPJC 75(2015)406 PRC 96 (2017) 054908

PRC 93 (2016) 064907

5/4/2022, DIS 2022 @ Santiago de Compostela, Spain