Measurements of Open Heavy Flavor in STAR Experiment

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions November 4 – 8, 2013, Cape Town, South Africa

Zhenyu Ye^{1,2} for the STAR Collaboration

- 1. University of Illinois at Chicago
- 2. Central China Normal University

Why Heavy Flavor?

- HF quarks are produced primarily in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U, ...
 - How does a parton lose its energy in the QGP? $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$?
 - Using the HF as a probe to study properties of the QGP and their dependence on system size, energy, ...

Why Heavy Flavor?

- HF quarks are produced primarily in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U, ...
 - How does a parton lose its energy in the QGP? $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$?
 - Using the HF as a probe to study properties of the QGP and their dependence on system size, energy, ...
- p+p
 - Test of pQCD and Reference for studies of the QGP
- p+Au, d+Au
 - Cold Nuclear Matter effects (shadowing, CGC, Cronin effect, ...)

Relativistic Heavy Ion Collider

Open Heavy Flavor Production

Semi-leptonic channel:

- Single e[±] with background subtraction estimated from MC+data
- Larger branching ratio; online trigger on high p_T charged leptons
- No direct access to the kinematics of the original charm hadrons; Contribution from charm and bottom

Hadronic channel:

- Fully reconstructed open charm hadrons with background estimated from data
- Smaller branching ratio; no direct trigger online; large background contribution w/o good vertex measurement

Open Charm Production – p+p –

Open Charm Production – p+p –

Hard Probes 2013, Z.Ye

8

Total charm production scales with the number of binary collisions at RHIC

Suppression at high p_T in central collisions is similar to that of pions.

low p_T enhancement described by models with light quarks coalescence with charm.

11

Hard Probes 2013, Z.Ye

Open Charm Hadronic Channel – Au+Au and U+U –

Non-Photonic Electron – Au+Au –

Non-Photonic Electron – Au+Au –

Hard Probes 2013, Z.Ye

16

Open Heavy Flavor Flow – Au+Au –

Significant non-zero NPE v_2 at low p_T : is it from coalescence with light quark and/or charm quark flow?

Open Bottom Production - p+p -

B->e and D->e extracted from e-h correlation and consistent with FONLL.

Heavy Flavor Tracker for 2014

- 2 layers of thin silicon pixel (MAPS): $0.5\%X_0$ /layer, 12x12µm resolution, 360M pixels
- 2 layers of silicon strip detectors: fast readout, bridging TPC and PXL

unique high precision at low p_T -> medium thermalization, total charm production

Muon Telescope Detector for 2014

- Multi-gap Resistive Plate Chamber:
 - Gas detector, avalanche mode
- Electronics same as STAR-TOF
- Acceptance: 45% at |η|<0.5
 - Covers the magnet iron bars with gaps in-between uncovered

(together with HFT) displaced J/psi from B hadron decay; e-mu correlations

Summary and Outlook

- Open charm and bottom production measured in 200 GeV p+p collisions consistent with FONLL calculations within uncertainties.
- Strong suppression observed for D⁰ at high p_T in 200 GeV Au+Au and 193 GeV U+U collisions, while enhancement structure at low p_T .
- Strong suppression observed for NPE in 200 GeV Au+Au collisions but not in 62 GeV Au+Au collisions(?). Significant v₂ observed for NPE in 200 GeV Au+Au collisions.
- New detectors take data starting in 2014 for HF physics: precise measurements down to low p_T to study how heavy flavor quarks interact with the hot nuclear medium, and the medium properties.

Open Bottom Production – Au+Au

