Dependence of J/ψ Production on Charged-Particle Multiplicity in p+p Collisions at $\sqrt{s}=200$ GeV with the STAR Experiment

8th International Workshop on Multiple Parton Interactions at the LHC, 2016

Zhenyu Ye^{1,2} (for the STAR collaboration)

University of Illinois at Chicago Central China Normal University

Motivation

- Quarkonium production mechanisms in p+p collisions are not fully understood
 - Hard processes for heavy quark pair production - pQCD
 - Non-perturbative soft processes for hadronization – CEM, CSM, COM
- More differential and comprehensive studies at different energies may shed new lights on quarkonium production and QCD
 - production cross-section
 - polarization
 - yield vs charged-particle multiplicity (N_{ch})
 - .
- Quarkonium yield versus N_{ch} can provide insights into multiple parton interactions

Open Charm Yield vs N_{ch} at LHC

Faster-than-linear rise of open charm production vs N_{ch} in p+p @ 7 TeV

- **PYTHIA8:** including MPI: $N_{hard} \propto N_{ch} \propto N_{MPI}$
- EPOS3: use Gribov-Regge multiple parton scattering for initial conditions:

 $\mathbf{N}_{\mathbf{hard}} \propto \mathbf{N}_{\mathbf{ch}} \propto \mathbf{N}_{\mathbf{MPI}}$

• EPOS3+Hydro: energy density in 7 TeV p+p collisions is high enough to apply hydrodynamic evolution to the core of the collisions.

 N_{hard} rises faster than N_{ch} in certain p_{T} range

 Percolation model: exchange color sources in collisions. High energy density suppresses soft process more than hard process
 N_{hard} rises faster than N_{ch}

Relativistic Heavy Ion Collider

STAR Experiment at RHIC

Electron Identification

J/ψ Reconstruction

- Trigger: VPD for MB, BEMC for HT0(2) with $E_T > \sim 2.5$ (4.3) GeV/c
- HT0(2): triggered electron p_T >2.5 (4.3) GeV/c
- Electron ID: TPC+EMC or TPC+TOF
- 2.9<m_{ee}<3.2 GeV/c², -1<y_{ee}<1

Zhenyu Ye

7

J/ψ Cross-section in p+p@200 GeV

STAR 2012 data preliminary

$$B_{ee} \frac{d\sigma_{J/\psi}}{dy} = 47.3 \pm 2.9 \pm 6.1 \pm 3.8 \ nb$$

PHENIX Publication $B_{ee} \frac{d\sigma_{J/\psi}}{dy} = 42.5 \pm 1.4 \pm 4.8 \pm 3.1 \, nb$

- Consistent with PHENIX result; Better precision at p_T>2 GeV/c
- NRQCD describes data fairly well; Small tension at p_T<1.5 GeV/c with CGC+NRQCD

Measuring N_{ch} at STAR

- Reconstruct charged particles with p_T >0.2 GeV/c and $|\eta|$ <1 with ≥ 20 TPC hits.
- "TPC-only" tracks receive large contribution from pile-up collisions, which can be suppressed by requiring tracks match to fast "TOF" hits.
- Dependences of pile-up effect,
 TPC and TOF efficiencies on
 instantaneous luminosity (zdcX)
 need to be taken into account.

TPC raw: detector-level TPC-only N_{ch} TOF raw: detector-level TPC+TOF N_{ch} TPC cor: TPC-only N_{ch} corrected by TPC efficiency TOF cor: TPC+TOF N_{ch} corrected by lumi-independent TPC+TOF efficiency TOF eff weight: TPC+TOF N_{ch} corrected by lumi-dependent TPC+TOF efficiency *Zhenvu* Ye

Measuring N_{ch} at STAR

- Charged particles with p_T>0.2 GeV/c and |η|<1 are reconstructed by the TPC and matched with TOF hits in NSD-enhanced (BBC 2.2<|η|<5.2) events.
- Raw N_{ch} distributions are unfolded to p_T>0 GeV/c and |η|<1 (corrected for detector efficiency and secondary particles from weak decays)

N_{ch} in p+p Collisions at 200 GeV

- Unfolded N_{ch} distribution can be described by negative binomial distribution.
- $dN_{ch}/d\eta$ =3.13±0.27 consistent with previous STAR result 2.98±0.34

J/ ψ Yield vs N_{ch} in p+p @ 200 GeV

Unfolded N_{ch} distribution for J/ ψ events can not be described by PYTHIA8. < N_{ch} > in data higher than that in PYTHIA8 for J/ ψ production.

J/ ψ Yield vs N_{ch} in p+p @ 200 GeV

- Unfolded N_{ch} distribution for J/ψ events can not be described by PYTHIA8.
 <N_{ch}> in data higher than that in PYTHIA8 for J/ψ production.
- Relative J/ψ yield vs N_{ch} increases faster than linear. Such an increase is qualitatively described by PYTHIA8 and Percolation model but the increase is underestimated.

J/ψ Yield vs Event Activity (N_{ch})

Faster-than-linear rise of open charm and J/ ψ production vs N_{ch} in p+p @ 7 TeV

14

Percolation model: exchange color sources in collisions. High energy density suppresses soft processes more than hard processes N_{hard} rises faster than N_{ch} at LHC

• **EPOS3+Hydro**: energy density in 7 TeV p+p collisions is high enough to apply hydrodynamic evolution to the core of the collisions

N_{hard} rises faster than N_{ch} at LHC

PYTHIA8 and EPOS3: with MPI underestimate the increase $N_{hard} \propto N_{ch} \propto N_{MPI}$

J/ψ Yield vs Event Activity (N_{ch})

- Percolation model: exchange color sources in collisions. High energy density suppresses soft processes more than hard processes
 N_{hard} rises faster than N_{ch} at LHC Small collisional energy dependence
 N_{hard} rises faster than N_{ch} at RHIC
- **EPOS3+Hydro**: energy density in 7 TeV p+p collisions is high enough to apply hydrodynamic evolution to the core of the collisions

 N_{hard} rises faster than N_{ch} at LHC Strong collision energy dependence $<dN_{ch}/deta> \sim 3$ at 200 GeV

~ 6 at 7 TeV

N_{hard} rises linearly as N_{ch} at RHIC

Stronger-than-linear rise following the same trend at 200 GeV and 7 TeV, suggests not a hot medium effect assumed in EPOS3+Hydro for p+p collisions

Summary and Outlook

 J/ψ yield vs event activity (N_{ch}) in p+p collisions at 200 GeV has been studied at STAR and compared to LHC results at 7 TeV

- Strong and similar correlation between J/ψ production and N_{ch} at 0.2 and 7 TeV
- PYTHIA8 qualitatively describes RHIC and LHC data but underestimates at high N_{ch}
- EPOS3 with MPI predicts linear increase and underestimates the data
- EPOS3+Hydro and Percolation model predict faster-than-linear increase, but the former expects strong dependence on \sqrt{s} , inconsistent with RHIC data.

More precise results from significantly increased data size and upgraded STAR detectors are expected.

- Improved low $p_T J/\psi$ precision by Muon Telescope Detector
- Open heavy flavor and Upsilon production, p+p at 500 GeV

N_{ch} Unfolding

N_{ch} Unfolding

