Rencontres de Moriond QCD, March 23 – 30, 2019, La Thuile, Italy

Open Heavy Flavor from STAR

Zhenyu Ye (for the STAR collaboration)

University of Illinois at Chicago

Outline

- Introduction
- Measurement results
 - Parton energy loss D^0 and B R_{AA}
 - Hadronization D_s/D^0 , Λ_c/D^0
 - Collectivity $D^0 v_n$
- Summary and outlook

Why Studying Heavy Quarks in Heavy-Ion Collisions

Relativistic Heavy Ion Collider

- Experimentally more challenging but also have advantages
 - less gluon-splitting contribution
 - less combinatorial $Q\overline{Q}$ background for HF correlation studies

∖s_™(GeV)

The STAR Experiment

- Tracking and PID (full 2π) TPC: $|\eta| < 1$ TOF: $|\eta| < 1$ BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ HFT (2014-2016): $|\eta| < 1$ MTD (2014+): $|\eta| < 0.5$
- **MB trigger and event** plane reconstruction BBC: $3.3 < |\eta| < 5$ FMS: $2.5 < \eta < 4$ VPD: $4.2 < |\eta| < 5$ ZDC: $6.3 < |\eta|$
- On-going/future upgrades EPD (2018): $2.1 < |\eta| < 5.1$ iTPC (2019): $|\eta| < 1.5$ eTOF (2019): $-1.6 < \eta < -1$ FCS (2021+): $2.5 < \eta < 4$ FTS (2021+): $2.5 < \eta < 4$

Zhenyu Ye

Open Charm Production in p+p Collisions

• Open charm (D⁰, D*) in p+p are consistent with FONLL calculations within large theoretical uncertainties. Data are at upper boundary of FONLL calculations

Feb 28, 2019

The STAR Experiment

- Tracking and PID (full 2π) TPC: $|\eta| < 1$ TOF: $|\eta| < 1$ BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ HFT (2014-2016): $|\eta| < 1$ MTD (2014+): $|\eta| < 0.5$
- MB trigger and event

 plane reconstruction

 BBC: $3.3 < |\eta| < 5$

 FMS: $2.5 < \eta < 4$

 VPD: $4.2 < |\eta| < 5$

 ZDC: $6.3 < |\eta|$

۲

On-going/future upgrades EPD (2018): $2.1 < |\eta| < 5.1$ iTPC (2019): $|\eta| < 1.5$ eTOF (2019): $-1.6 < \eta < -1$ FCS (2021+): $2.5 < \eta < 4$ FTS (2021+): $2.5 < \eta < 4$

Zhenyu Ye

The STAR Heavy Flavor Tracker (2014-2016)

Silicon Strip Detector (SSD)

- one layer of double-sided silicon strip sensors Intermediate Silicon Tracker (IST)
- one layer of single-sided double-metal silicon pad sensors
 <u>PiXeL detector (PXL)</u>
- two layers of thin MAPS with ~360M 20x20 micron² pixels
- 1st application of MAPS technology in collider experiment

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
pixel det. type	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
pixel size (μm)	50x425	50x400	100x150	200x200	50x425	20x20
L1 radius (cm)	3.9	5.1	4.4	N/A	2.5	2.8
L1 thickness	1%X ₀	0.4%X ₀				

Zhenyu Ye

March 29, 2019

Experimental Observables

• Nuclear modification factors: R_{AA}

• Azimuthal anisotropy: v_n

$$\frac{dN}{d\phi} = N_0 \left[1 + \sum_n 2v_n \cos n\phi \right]$$

Open Charm and Bottom Production in Au+Au Collisions

Zhenyu Ye

Charm Quark Hadronization in Au+Au Collisions

• D_s/D^0 and Λ_c/D^0 in Au+Au are significantly higher than p+p collisions: charm quark hadronization through coalescence with light flavor quarks

Total Charm Production Cross Section in Au+Au Collisions

Charm I	Hadron	Cross Section dơ/dy (µb)	
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5	
	D^+	18 ± 1 ± 3	
	D_s^+	15 ± 1 ± 5	
	Λ_c^+	78 ± 13 ± 28 *	
	Total	152 ± 13 ± 29	
pp 200 GeV	Total	130 ± 30 ± 26	

* derived using Λ^+_{\perp} / D^0 ratio in 10-80%

- Charm quark production cross-section per binary collision in Au+Au consistent with p+p
- Charm quark distribution among hadron species different between Au+Au and p+p

Zhenyu Ye

Charm Quark Collectivity in Au+Au Collisions – v_2 and v_3

- Significant D⁰ meson v₂ and v₃
- D^0 meson v_2 and v_3 follow ($m_T m_0$) NCQ scaling as light flavor hadrons

Zhenyu Ye

Charm Quark Collectivity in Au+Au Collisions – v₂ and v₃

Compared Models	x2/NDF	p-value
SUBATECH [1]	17.3/8	0.026
TAMU c quark diff. [2]	12.0/8	0.15
TAMU no c quark diff. [2]	33.7/8	4.5 x10 ⁻⁵
Duke (Bayesian) [3]	8.5/8	0.39
3D viscous hydro [4]	3.7/6	0.71
LBT [5]	13.3/8	0.10
PHSD [6]	8.7/7	0.27
Catania [7]	9.7/8	0.29

- Provide strong constraint on model calculations
- Charm quarks gain collectivity, and may have reached a local equilibrium with the medium

Summary and Outlook

- Extensive studies of open charm production with the Heavy Flavor Tracker at STAR
 - charm quark energy loss: $D^0 R_{AA}$
 - charm quark collectivity: $D^0 v_n$
 - charm quark hadronization: D_s/D^0 , Λ_c/D^0
 - not covered: D⁺ R_{AA}, D_s v₂, D*/D⁰, $\overline{D^0}/D^0$, e^{HF} R_{AA} and v₂, D-h correlations
- First look into open bottom production
 - mass hierarchy of energy loss $\Delta E_b \leq \Delta E_c$: $e^B R_{AA} > e^D R_{AA}$
 - not covered: non-prompt J/psi and non-prompt $D^0\,R_{AA}$
- Ongoing data analyses for
 - 2015 p+p: improved p+p reference
 - 2015 p+Au, 2016 d+Au: Cold Nuclear Matter effects
 - 2016 Au+Au : improved B->e

Stay tuned!

Zhenyu	Ye
--------	----

Open Bottom Production in p+p Collisions

FONLL: M. Cacciari, et al. PRL 95 (2005) 122001

• Fraction of B-decayed electrons described by FONLL calculations within large theoretical uncertainties. Data are close to the center of FONLL calculations

Feb 28, 2019

Open Heavy Flavor Production in p+p Collisions

- Open charm (D⁰, D*) and bottom (B-decayed e/μ , J/ψ) measured at RHIC
- Data described by pQCD within large theoretical uncertainty

Open Charm Signals in Au+Au Collisions

• HFT significantly improves D⁰ S/N, and enables the first D^{\pm} , D^{\pm} , D_s , Λ_c studies at RHIC

Open Charm Signals in Au+Au Collisions

- HFT significantly improves D⁰ S/N, and enables the first D^{*±}, D[±], D_s, Λ_c studies at RHIC
- Further improvement from multivariant data analysis technique

Zhenyu Ye / UIC

Feb 28, 2019

Open Charm Production in Au+Au Collisions

$\mathbf{D}^{\mathbf{0}} \ \mathbf{R}_{\mathbf{A}\mathbf{A}}$

- less than unity for all p_T in 0-10% central collisions
- suppression at low p_T w/o strong centrality dependence
- suppression at high p_T increases towards more central collisions

$D^0 R_{CP}$

- confirm the centrality dependence of R_{AA}
- compatible to light flavor hadrons at high p_T , higher at low/intermediate p_T
- described well by LBT and Duke (Bayesian) models

STAR: arXiv:1812.10224 , submitted to PRC LBT: S. Cao, et al. PRC 94 (2016) 014909 Duke: Y. Xu, et al. PRC 97 (2018) 014907

Open Charm Production in Au+Au Collisions

D⁰ R_{AA}

- less than unity for all p_T in 0-10% central collisions
- suppression at low p_T w/o strong centrality dependence
- suppression at high p_T increases towards more central collisions

D⁰ **p**_T-integrated yield

- independent of centrality
- less than p+p yield

$D^0 p_T > 4 \text{ GeV/c yield}$

• decrease towards central

STAR: arXiv:1812.10224, submitted to PRC LBT: S. Cao, et al. PRC 94 (2016) 014909 Duke: Y. Xu, et al. PRC 97 (2018) 014907

Open Charm Production in Au+Au Collisions

$D^0 \: R_{AA}$ in 0-10%

- compatible to LHC results
- compatible to light flavor hadrons at high p_T, but higher at intermediate p_T
- exhibits a bump structure consistent with expectation of radial flow
- qualitatively described by LBT and Duke (Bayesian) models

STAR: arXiv:1812.10224 , submitted to PRC LBT: S. Cao, et al. PRC 94 (2016) 014909 Duke: Y. Xu, et al. PRC 97 (2018) 014907

Open Bottom Signals in Au+Au Collisions

- We have measured 3 different decay channels of B hadrons enabled by the HFT.
 - 1 → ~900M MB (2014) + ~1.2 nb⁻¹ HT events (2014 + 2016)
 - $2 \rightarrow \sim 900 \text{MB} (2014)$
 - $3 \rightarrow \sim 900 \text{MB} (2014) + \sim 0.2 \text{ nb}^{-1} \text{HT} \text{ events} (2014)$

Ethe 128 20 1 9 UIC

Open Bottom Production in Au+Au Collisions

Etcle n28y 20e19UIC

Open Bottom Production in Au+Au Collisions

Ette 128 2019UIC

Open Bottom Production in Au+Au Collisions

Ethe 128y 20e19UIC

Bottom Quark Energy Loss in Au+Au Collisions

- Suppression of B-decayed J/ ψ and D⁰ at high p_T
- $e^{B} R_{AA} > e^{D} R_{AA}$ consistent with expectation $\Delta E_{b} < \Delta E_{c}$

Zhenyu Ye / UIC

Feb 28, 2019

Charm Hadronization in Au+Au Collisions - D_s/D^0

- D_s/D^0 ratio in Au+Au compatible with LHC Pb+Pb, and significantly higher than p+p
- TAMU model under-predicts data

Zhenyu Ye

Charm Hadronization in Au+Au Collisions - Λ_c/D^0

• Models with charm quark coalescence hadronization qualitatively describe data

Feb 28, 2019

Charm Hadronization in Au+Au Collisions - Λ_c/D^0

- Λ_c/D^0 enhancement in Au+Au collisions w.r.t. PYTHIA
- Models with charm quark coalescence hadronization qualitatively describe data

Charm Quark Collectivity in Au+Au Collisions – Radial Flow

• BW fits suggest early freeze-out and smaller radial flow of D⁰ than light flavor hadrons

• T_{kin} close to critical temp. T_c , suggesting D⁰ radial flow mostly from partonic stage

Zhenyu Ye / UIC

Feb 28, 2019

Charm Quark Collectivity in Au+Au Collisions – v₁

• First evidence for non-zero $D^0 v_1$:

 $D^{0} + \overline{D^{0}} dv_{1}/dy$ = -0.081 ± 0.021(stat.) ± 0.017(syst.)

probe the initial tilt of the source and EM field