Open Charm Hadron Production in p+p, Au+Au and U+U Collisions at STAR

Zhenyu Ye^{1,2} for the STAR Collaboration

- 1. University of Illinois at Chicago
- 2. Central China Normal University

Why Heavy Flavor?

- HF quarks are primarily produced in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U
 - How does a parton lose its energy in the QGP?

 $\Delta E_{g} > \Delta E_{u/d/s} > \Delta E_{c} > \Delta E_{b}$?

 Using the HF as a probe to study properties of the QGP and their dependence on e.g. system size and energy

Why Heavy Flavor?

- HF quarks are primarily produced in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U
 - How does a parton lose its energy in the QGP?

 $\Delta E_{g} > \Delta E_{u/d/s} > \Delta E_{c} > \Delta E_{b}$?

- Using the HF as a probe to study properties of the QGP and their dependence on e.g. system size and energy
- p+p
 - Test of pQCD and reference for studies of the QGP
- p+Au, d+Au
 - Cold Nuclear Matter effects (shadowing, CGC, Cronin effect, ...)

Why Heavy Flavor?

- HF quarks are primarily produced in initial hard scattering, and are exposed to the evolution of the hot nuclear matter created at RHIC.
- Au+Au, Cu+Cu, U+U
 - How does a parton lose its energy in the QGP?

 $\Delta E_{g} > \Delta E_{u/d/s} > \Delta E_{c} > \Delta E_{b}$?

- Using the HF as a probe to study properties of the QGP and their dependence on e.g. system size and energy
- **p+p**
 - Test of pQCD and reference for studies of the QGP
- p+Au, d+Au
 - Cold Nuclear Matter effects (shadowing, CGC, Cronin effect, ...)

STAR Experiment

TPC: Tracking, PID (dE/dx)

TOF: PID (1/β)

BEMC: High Tower trigger

VPD: MinBias trigger

STAR Experiment

Open Charm Production and Decay

Semi-leptonic channel:

- large branching ratio
- but no access to the kinematics of the original charm hadrons; contribution from both charm and bottom

(posters: Bai-F04, Dunkelberger-F14, Oh-F39, Rusnakov-F49)

Hadronic channel:

- fully reconstructed hadron kinematics
- but large background w/o good vertex measurement

Open Charm Production – D⁰ Reconstruction -

STAR

Open Charm Production - D* Reconstruction -

Open Charm Production – p+p –

Open Charm Production - p+p -

Open Charm Production – Au+Au –

Open Charm Production – Au+Au –

Open Charm Production – U+U –

U+U collisions could have 20% higher energy density than Au+Au

Open Charm Production – U+U –

Open Charm Production – U+U –

Suppression of open charm at high p_T in U+U collisions is similar to and extends the trend as that of open charm and pions in Au+Au collisions.

Nuclear Modification Factor

	TAMU	SUBATECH	Torino	Duke	LANL
HQ prod.	LO	FNOLL	NLO	LO	LO
QGP-Hydro	ideal	ideal	viscous	viscous	ideal
HQ eLoss	coll.	coll. +rad.	coll. +rad.	coll. +rad.	diss. +rad.
Coalescence	Yes	Yes	No	Yes	No
Cronin effect	Yes	Yes	No	No	Yes
Shadowing	No	No	Yes	Yes/No	Yes

- Large suppression at high p_T points to strong charm-medium interaction;
- Indication of enhancement p_T~0.7-2GeV/c, described by models with charm quarks coalescence with light quarks;
- CNM effects could be important

STAR

Summary

- D⁰/D* mesons reconstructed in hadronic decay channels, thanks to the excellent PID of the STAR detector.
- D⁰/D* differential production cross-section measured for p_T~0.4-18 GeV/c in 200 and 500 GeV p+p collisions, consistent with FONLL calculations within uncertainties.
- Significant suppression at high p_T and indication of enhancement at p_T~0.7-2 GeV/c observed for D⁰ production in both Au+Au and U+U collisions, which can be described by model calculations with strong charm-medium interaction and coalescence hadronization.

Outlook

Talk: Qiu-557; Posters: Lomnitz-M13 and Wang-M30

D⁰ Reconstruction in Au+Au

Counts (× 10⁹) STAR Au+Au 200 GeV MinBias (a) 10⁴) Submitted to PRL 0-80% 0 < p_ < 8 GeV 400 $0 < p_{_{T}} < 8 \text{ GeV/c}$ arXiv:1404.6185 $N_{sig} = 13.9$ (b) Counts (× 200 200 lyl < 1, 0-80% same event (SE)mix event (ME) SE-ME [× 200] 100 5 0 0.5 1.0 1.5 2.0 2.5 3.0 1.8 1.9 2.0 0-10% Counts (× 10⁴) 0 0 0 00 00 $0 < p_{T} < 0.7 \text{ GeV/c} [\times 5]$ 1.1 < p₋ < 1.6 GeV/c [× 3] 5.0 < p₋ < 8.0 GeV/c [× 10] $N_{sig} = 3.4$ $N_{sig} = 6.3$ $N_{sig} = 3.6$ (C) (d) (e) 0-10% 0-10% 0-10% 1.8 1.9 2.0 1.8 1.9 2.0 1.8 1.9 2.0 $M_{K\pi}$ (GeV/c²)

Open Charm Production

Open Charm Production – Au+Au –

Submitted to PRL arXiv:1404.6185