

The 27th International Conference
on Ultrarelativistic
Nucleus-Nucleus Collisions14-19 MayPalazzo del CinemaLido di Venezia, Italy

STAR

Highlights from STAR

Zhenyu Ye for the STAR Collaboration University of Illinois at Chicago

Office of Science

STAR Detector

- Tracking and PID (full 2π) TPC: $|\eta| < 1$ TOF: $|\eta| < 1$ BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ HFT (2014-2016): $|\eta| < 1$ MTD (2014+): $|\eta| < 0.5$
- MB trigger and event
plane reconstructionBBC: $3.3 < |\eta| < 5$ EPD (2018+): $2.1 < |\eta| < 5.1$ FMS: $2.5 < \eta < 4$ VPD: $4.2 < |\eta| < 5$ ZDC: $6.5 < |\eta| < 7.5$
- On-going/future upgrades iTPC (2019+): $|\eta| < 1.5$ eTOF (2019+): $-1.6 < \eta < -1$ FCS (2021+): $2.5 < \eta < 4$ FTS (2021+): $2.5 < \eta < 4$

Quark Matter 2018, Venice, Italy

Introduction

RHIC Top Energy

p+p, p+Al, p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, Ru+Ru, Zr+Zr, Au+Au, U+U

- QCD at high energy density/temperature
- Properties of QGP, EoS

Beam Energy Scan

Au+Au $\sqrt{s_{NN}} =$ 7.7-62 GeV

- QCD phase transition
- Search for critical point
- Turn-off of QGP signatures

Fixed-Target Program Au+Au $\sqrt{s_{NN}}$ =3.0-7.7 GeV

• High baryon density regime with $\mu_B \sim 420-720 \text{ MeV}$

Quark Matter 2018, Venice, Italy

Outline

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_⊤ hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, ϕ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass

12. Upgrades - BES-II and forward upgrades

Outline

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_T hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, ϕ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass

12. Upgrades - BES-II and forward upgrades

D^0 Directed Flow in 200 GeV Au+Au Collisions

• First evidence for non-zero $D^0 v_1$ from 2014+2016 Heavy Flavor Tracker (HFT) data:

 $D^0 + \overline{D^0} dv_1/dy = -0.081 \pm 0.021(stat.) \pm 0.017(syst.)$ probe the initial tilt of the source and the initial EM field

Subhash Singha #540 May 16, 9:40

Λ_c Enhancement in 200 GeV Au+Au Collisions

STAR

D^0 Nuclear Modification Factors in 200 GeV Au+Au Collisions

Quark Matter 2018, Venice, Italy

D^0 Nuclear Modification Factors in 200 GeV Au+Au Collisions

• Erratum for 2010/11 and a separate paper for 2014 data to be submitted soon

Upsilon Suppression in 200 GeV Au+Au Collisions

- Improved precision by combining 2011 di-electron, 2014+2016 di-muon
- $\Upsilon(2S + 3S) R_{AA}$ smaller than $\Upsilon(1S)$ in 0-10%, "sequential melting" at RHIC #544 May 15 11:10

Quark Matter 2018, Venice, Italy

Zhenyu Ye for STAR Collaboration

Pengfei Wang

Di-Jet Imbalance in 200 GeV Au+Au Collisions

Di-hadron Correlations in 200 GeV Au+Au Collisions

plane, and on q₂ : path-length dependence of jet-medium interaction

Ryo Aoyama #551 May 15 16:40

Quark Matter 2018, Venice, Italy

Outline

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_T hadrons di-jet imbalance, di-hadron correlation

4. Chirality, vorticity and polarization effects - Λ polarization, ϕ polarization, CME, CMW

- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass

12. Upgrades - BES-II and forward upgrades

• First observation of A **global** polarization at 200 GeV

Takafumi Niida #584, May 15, 9:00

Λ Global and Local Polarization in 200 GeV Au+Au Collisions

Spin Alignment of ϕ Mesons in 200 GeV Au+Au Collisions

• ϕ -meson ρ_{00} deviates from 1/3 in non-central collisions, probe vorticity induced by initial angular momentum and particle production

Chensheng Zhou #731, May 16, 18:10

Chiral Magnetic Effect at RHIC Top Energy

• Isolate possible CME signal in inclusive $\Delta \gamma$ by different methods

Chiral Magnetic Effect at RHIC Top Energy

J. Zhao et al. arXiv:1705.05410

0.1

N. Magdy, et al., arXiv:1710.01717

- Isolate possible CME signal in inclusive $\Delta \gamma$ by different methods ٠
- New observable $R_{\Psi_2}(\Delta S)$ shows difference between p(d)+Au and peripheral Au+Au collisions
- Dedicated isobar run this year completed, blind analyses for CME studies being conducted

E F

0

-0.1

Chiral Magnetic Wave at RHIC Top Energy

- Differences in slope (r) among p/d+Au, Au+Au and U+U consistent with CMW expectation
 - Difference between normalized Δv_2 and Δv_3 in most central and peripheral collisions

Qiye Shou #592, May 16, 17:30

STAR

Outline

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_T hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, ϕ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass

12. Upgrades - BES-II and forward upgrades

Flow and Fluctuations in Multiple Systems

• Ratio of $v_n\{4\}/v_n\{2\}$ is sensitive to flow fluctuations. The ratio for elliptic flow depends on collision system while that for triangular flow is independent

Niseem Magdy #588, May 15, 11:30

Flow and Fluctuations in Multiple Systems

- Ratio of $v_n\{4\}/v_n\{2\}$ is sensitive to flow fluctuations. The ratio for elliptic flow depends on collision system while that for triangular flow is independent
- v_2 {2} scales with ε_2 {2} similar viscous effect in these collisions

Niseem Magdy #588, May 15, 11:30

STAR

Collectivity in Small Systems

• Different $V_{2,2}$ from different methods to correct for non-flow background in p/d+Au collisions. Be careful about the assumptions of the methods.

Shengli Huang #734, May 15, 11:30

Quark Matter 2018, Venice, Italy

STAR

Longitudinal Flow Decorrelation in 200 GeV Au+Au Collisions

- Stronger longitudinal flow decorrelation at RHIC than at LHC
- Hydro calculations can not simultaneously describe LHC and RHIC data #332, May 15 19:10

Quark Matter 2018, Venice, Italy

24

Maowu Nie

Directed Flow of Identified Particles in Beam Energy Scan

STAR, Phys. Rev. Lett. **120** (2018) 62301 $(v_1)_{trans.u(d)} = [(v_1)_{net p} - (3 - N_{trans.u(d)})(v_1)_{\overline{u}(\overline{d})}]/N_{trans.u(d)}$ $N_{trans.u(d)} = 3[1 - exp(-2\mu_{u(d)}/T_{ch})]/(1 - r_{\overline{p}/p})$

- 10 species & 8 energies allow a detailed study of constituent-quark v₁. In most cases, the coalescence picture works for both "produced" particles and "net" particles
- "Transported quark" v₁ has a local minimum at ~14.5 GeV

Gang Wang #587, May 16, 11:50

Fixed-Target Test Run for Au+Au at $\sqrt{s_{NN}}$ =4.5 GeV

- First πv_1 measurement in this energy range, v_1 slope turning up towards lower energies
- Dedicated FXT runs (3.0-7.7 GeV) in 2019+ to explore high baryon density regime.

Yang Wu #558, May 15, 16:00

STAR

Outline

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_T hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, ϕ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass

12. Upgrades - BES-II and forward upgrades

Femtoscopy with Identified Particles in Beam Energy Scan

- Energy and centrality dependence of HBT radius studied with BES data
- Lighter particles emitted closer to the center of the source than heavy particles #590, May 16, 15:40

Quark Matter 2018, Venice, Italy

Zhenyu Ye for STAR Collaboration

Sebastian Siejka

Cumulants of Net-Particle Distributions in Beam Energy Scan

Significant correlation in Q-k and Q-p is observed that can not be explained by thermal (HRG) or nonthermal (UrQMD) model calculations.

Toshihiro Nonaka #585, May 16, 12:50

Cumulants of Net-Particle Distributions in Beam Energy Scan

Significant correlation in Q-k and Q-p is observed that can not be explained by thermal (HRG) or nonthermal (UrQMD) model calculations.

Net-Lambda cumulant ratio C_2/C_1 closer to HRG calculations with freezeout condition of kaon than charge/proton.

> Toshihiro Nonaka #585, May 16, 12:50

Quark Matter 2018, Venice, Italy

• Non-monotonic energy dependence of neutron density fluctuation $\Delta n = \langle \delta_n^2 \rangle / \langle n \rangle^2$

Peng Liu #556, May 15, 15:40

Measurement of (Anti-)Hypertriton Masses

• Excellent S/B ratio from the HFT data, allowing for precise determination of the hypertriton binding energy: $m_d + m_\Lambda - m_{\Lambda H}^3 = 0.44 \pm 0.10 \text{ (stat.)} \pm 0.15 \text{ (syst.)} \text{ MeV}$

providing insight on Hyperon-Nucleon interaction and thus neutron star structure,

and the mass difference between ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}\overline{H}$

$$\Delta m/m)_{\Lambda H}^{3} = (1.0 \pm 0.9 \text{ (stat.)} \pm 0.7 \text{ (syst.)}) \times 10^{-4}$$

is the first test of the CPT symmetry in the light hyper-nuclei sector.

STAR

Outline

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_T hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, ϕ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass

12. Upgrades - BES-II and forward upgrades

The STAR Forward Calorimeter and Forward Tracking System

A Tale of Initial State: Nucleon to Nuclei Beam Energy Scan Phase II (2019+) Collider + FXT at 3.5-19.6 GeV with iTPC, EPD, eTOF

Look for 1st order phase transition Look for QCD critical point Turn-off of QGP signatures

Forward Upgrade (2021+) p+p, p+A, A+A at top energies

 $\begin{array}{l} (3+1) {\rm D} \mbox{ correlations} \\ \mbox{Initial state \& hadronization in nucl. collisions} \\ \mbox{Subprocess driving large A_N at high x_F and η \\ \mbox{Signature and A-dependence of saturation} \\ \mbox{TMDs at low and high x, $\Delta g(x)$ at low x } \end{array}$

Qian Yang #23, May 15, 10:00

Summary

- 1. Open heavy flavor $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_c
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high-p_T hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, ϕ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass
- 12. Upgrades BES-II and forward upgrades

19 oral and 32 poster presentations from STAR (listed in the following slides)

Parallel Talks from STAR

Thermodynamics and hadron chemistry

#556 Precise measurement on hypertriton and anti-hypertriton masses and lifetimes with the Heavy Flavor Tracker and the production of triton in Au+Au collisions at STAR, by **Peng Liu**, **May 15 15:40**

Initial state physics and approach to equilibrium

#588 Collision System Dependence of Anisotropic Flow, Flow Fluctuations and Mixed Harmonic Correlations at STAR Energies, **by Niseem Magdy, May 15 11:30**

Correlations and fluctuations

#551 Event Plane Dependence of Di-hadron Correlations with Event Shape Engineering at the STAR Experiment, by Ryo Aoyama, May 15 16:40

#590 Geometry and Dynamics in Heavy-ion Collisions Seen by the Femtoscopy in the STAR Experiment, **by Sebastian Siejka, May 16 15:40**

Collective dynamics

#591 Measurement of Longitudinal Decorrelation of Anisotropic Flow v2 and v3 in 54 and 200 GeV Au+Au Collisions at STAR, **by Maowu Nie, May 15 12:50**

#587 Directed Flow of Quarks from the RHIC Beam Energy Scan Measured by STAR, by Gang Wang, May 16 11:50

Chirality, vorticity and polarisation effects

#584 Global Polarization of Lambda Hyperons in Au+Au Collisions at 200 GeV from STAR, by Takafumi Niida, May 15 9:00

#848 Measurements of the Chiral Magnetic Effect with Background Isolation in 200 GeV Au+Au Collisions at STAR, by Jie Zhao, May 16 9:40

#592 Search for the Chiral Magnetic Wave with Anisotropic Flow of Identified Particles at RHIC-STAR, **by Qiye Shou**, **May 16 17:30**

#731 Phi Meson and K* Spin Alignment in High Energy Nuclear Collisions at STAR, by Chensheng Zhou, May 16 18:10

Jet modifications and high-pT hadrons

#552 Systematic Studies of Jet-medium Interactions in STAR, by Kun Jiang, May 16 10:20

Open heavy flavor

#546 Measurements of Open Charm and Bottom Production in Au+Au Collisions at 200 GeV with the STAR Experiment at RHIC, by Sooraj Radhakrishnan, May 15 15:40

#540 Measurements of D0 Meson Directed, Elliptic and Triangular Flow Using the STAR Detector at RHIC, by Subhash Singha, May 16 9:40

<u>Quarkonia</u>

#544 Upsilon Measurements in Au+Au Collisions at √sNN= 200 GeV with the STAR Experiment, **by Pengfei Wang, May 15 11:10**

Phase diagram and search for the critical point

#585 Recent Results and Methods on Higher Order and Off-diagonal Cumulants of Identified Net-particle Multiplicity Distributions in Au+Au Collisions at STAR, **by Toshihiro Nonaka**, **May 16 12:50**

High baryon density and astrophysics

#558 Recent Results from the STAR Fixed-Target Program, by Yang Wu, May 15 16:00

Collectivity in small systems

#734 Long-range Collectivity in Small Collision Systems with Two- and Four-particle Correlations at STAR, by Shengli Huang, May 15 11:30

Future facilities, upgrades and instrumentation

#23 The STAR BES II and Forward Rapidity Physics and Upgrades, by Qian Yang, May 15 10:00

Posters from STAR

Thermodynamics and hadron chemistry

#450 Collision Energy and Centrality Dependence of Light Nuclei (Triton) Production at RHIC with the STAR Experiment, by Dingwei Zhang

#559 Strangeness Production in U+U Collisions at STAR, by Srikanta Kumar Tripathy

Initial state physics and approach to equilibrium

#98 Cold Nuclear Matter Effects on Non-Photonic Electron Production Measured in p+Au Collisions at $\sqrt{NN} = 200$ GeV at STAR, by Peipei Zheng

#543 Measurements of D0 Production in p+Au and d+Au Collisions at vsNN = 200 GeV by the STAR Experiment, by Lukas Kramarik

#733 Directed Flow Due to the Initial Source Tilt and Density Asymmetry in Cu+Au and Au+Au Collisions at STAR, by Takafumi Niida

Correlations and fluctuations

#453 Effect of Volume Fluctuation and Non-binomial Efficiency on the Cumulants of Net-proton Multiplicity Distributions at the STAR Experiment, by Toshihiro Nonaka

#467 Angular Correlations Study of Identified Hadrons in the STAR Beam Energy Scan Program, by Andrzej Lipiec

#528 Energy Dependence of the Fluctuations of Net-Lambda Distributions at STAR, by Nalinda Kulathunga

#532 Measurement of the Sixth-order Cumulant of Net-charge Distributions in Au+Au Collisions at vSNN = 200 GeV by the STAR Experiment, by Tetsuro Sugiura

#579 Femtoscopic Measurements for Shape-engineered Events in Au+Au Collisions at STAR, by Benjamin Schweid

Collective dynamics

#124 D0-meson Elliptic Flow Measurement in Au+Au Collisions at vsNN = 200 GeV from STAR, by Yue Liang

#527 Charged Particle Yields and Anisotropic Flow at Forward Rapidities from Au+Au Collisions at 54GeV Using the STAR Event Plane Detector, by Isaac Upsal

Chirality, vorticity and polarisation effects

#452 The Azimuthal Angle Dependence of Lambda (anti-Lambda) Polarization in Au+Au Collisions from STAR, by Biao Tu

#593 Beam Energy and Collisions System Dependence of Charge Separation Relative to the Second-, Third- and Fourth-order Event Planes and the Implications for the Search for Chiral Magnetic Effects in STAR, by Niseem Magdy

Jet modifications and high-pT hadrons

#375 Performance of Heavy-flavor Tagged Jet Identification in STAR, by Saehanseul Oh

Open heavy flavor

#81 Centrality and Transverse Momentum Dependences of D0-meson and D±-meson Production at Mid-rapidity in Au+Au Collisions at VsNN = 200 GeV at STAR, by Guannan Xie

#83 Topological Cut Optimization for Lambda_c Reconstruction Using the Supervised Learning Algorithm in TMVA at STAR, by Chuan Fu

#84 Production of D± Mesons in Au+Au Collisions at VsNN = 200 GeV Measured by the STAR Experiment, by Jan Vanek

#85 Extraction of Bottom Production via the Semi-leptonic Decay Channel in Au+Au Collisions at VsNN = 200 GeV by the STAR Experiment, by Yifei Zhang

#87 D*± Production in Au+Au Collisions at √sNN = 200 GeV Measured by the STAR Experiment, by Yuanjing Ji

#100 Measurement of Lambda_cbar-/Lambda_c+ Ratio in Au+Au Collisions at vsNN = 200 GeV with the STAR Experiment, by Miroslav Simko

#541 Measurements of Open Bottom Hadron Production via Displaced J/psi, D0 and Electrons in Au+Au Collisions at vsNN = 200 GeV at STAR, by Xiaolong Chen

<u>Quarkonia</u>

#80 Measurement of J/psi Polarization in p+p Collisions at \sqrt{s} = 200 GeV through the Di-muon Channel at STAR, by Zhen Liu

#110 Measurements of the Upsilon Meson Production in Au+Au Collisions at VsNN = 200 GeV by the STAR Experiment, by Oliver Matonoha

Electromagnetic and weak probes

Dimuon Invariant Mass Spectra with the Muon Telescope Detector at STAR in p+p collisions at 200 GeV, by James Brandenburg

Phase diagram and search for the critical point

#534 Off-diagonal Cumulants of Net-charge, Net-proton, and Netkaon Multiplicity Distributions in Au+Au collisions at STAR, by Arghya Chatterjee

#535 Cumulants of Net-Proton Multiplicity Distributions in Cu+Cu Collisions at VsNN = 22.4, 62.4 and 200 GeV from STAR, by Zhenzhen Yang

Collectivity in small systems

#851 STAR Measurements of Elliptic Flow in Small Collision Systems, by Maria Sergeeva 15

Future facilities, upgrades and instrumentation

#14 Performance of the STAR Event Plane Detector, by Justin Ewigleben

#20 Construction of the STAR Event Plane Detector, by Joseph Adams

#25 The STAR Mid-Rapidity Physics Program after the BES-II, by Qian Yang

#26 The STAR Forward-Rapidity Physics Program after the BES-II, by Li Yi