STAR Upgrade Plans and Physics Outlook

RHIC&AGS Users Meeting, June 25-28 2013, BNL

Zhenyu Ye for the STAR collaboration

(1) Department of Physics, University of Illinois at Chicago, USA

(2) College of Physical Science & Technology, Central China Normal University, China

Outline

- Introduction
- On-going upgrades and physics goals
 - Heavy Flavor Tracker
 - Muon Telescope Detector
- Middle- and longer term plans
 - Forward upgrades
 - eSTAR for eRHIC
- Summary

STAR Physics Focus

Polarized p+p Program: proton intrinsic properties, QCD

Small-x Physics Program

low-x properties, initial conditions search for CGC elastic and inelastic process in pp2pp

1) At 200 GeV at RHIC

- medium properties, EoS
- pQCD in hot and dense medium
- 2) RHIC Beam Energy Scan (BES)
 - search for the QCD critical point
 - chiral symmetry restoration

STAR Decadal Plan

STAR Decadal Plan:

http://www.bnl.gov/npp/docs/STAR_Decadal_Plan_Final[1].pdf

- (1) Properties of the sQGP
- (2) Mechanism of energy loss
- (3) Is there a critical point, and if so, where?
- (4) Novel symmetry properties
- (5) Exotic particles
- (6) Spin structure of the nucleon
- (7) How to go beyond leading twist and collinear factorization?
- (8) What are the properties of cold nuclear matter?

Emergent properties of QCD matter

New STAR Results

J.Stevens "Summary of Recent STAR Results" and other STAR talks this week

Outline

- Introduction
- On-going upgrades and physics goals
 - Heavy Flavor Tracker
 - Muon Telescope Detector
- Middle- and longer term plans
 - Forward upgrades
 - eSTAR for eRHIC
- Summary

STAR Detector in 2013-2014

Heavy Flavor Tracker - HFT

On-going DOE MIE since 2010

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm)	Radiation length
SSD	22	20 / 740	1% X ₀
IST	14	170 / 1800	<1.5 %X ₀
PXL	8	12 / 12	~0.4 %X ₀
	2.5	12 / 12	~0.4% X ₀

<u>PXL</u>

- two layers of Monolithic Active Pixel Sensors with 20.7x20.7 μm pitch, 400M channels
- installation/repair ~12h while STAR rolled in
- delivering ultimate pointing resolution allowing for direct topological identification of c/b

IST

 one layer of single-sided mini-silicon strip detector guiding tracks from SSD to PXL

<u>SSD</u>

 existing single layer of double-sided silicon strip detector with electronic upgrade

QM2012 "Heavy Flavor, Quarkonia and Electroweak Probes" by L.Ruan, C. Gale Open heavy flavor results in A+A

9

QM2012 "Heavy Flavor, Quarkonia and Electroweak Probes" by L.Ruan, C. Gale Open heavy flavor results in A+A

- Significant charmed hadron, B hadron suppression observed. $R_{AA}(D) \sim R_{AA}(\pi) \leq R_{AA}(B \rightarrow J/\psi)$
- D meson flows (High precision measurements of electron, muon R_{AA} and v₂ also reported by ALICE, ATLAS, and STAR)
- Need more precise measurements to study color charge and/ or flavor dependence of energy loss

(Projected) HFT Physics Goals - 2014

unique high precision at low p_{τ} -> medium thermalization, total charm production₁₁

HF decayed electrons

(Projected) HFT Physics Goals – 2014+

STAR multi-year physics program with the heavy flavor measurements requires high statistics data from both p+p and heavy ion collisions

- Λ_c: lowest charm baryon state,
 cτ ~ 60µm
- First measurement of charm baryon in heavy ion collisions
- Hadro-chemistry with charm
- Meson vs. baryon effect with charm hadrons

HFT Engineering Run in 2013

3 out of 10 PXL sectors successfully installed and took data in dedicated low luminosity runs in 2013

- design works, successful integration in STAR
- lessons learned on mechanical, operation settings, latch-up and stability, etc
- First results: TPC-PXL correlation match expected TPC resolution (~1-2 mm)

Full HFT starts data taking in 2014

Muon Telescope Detector - MTD

- Multi-gap Resistive Plate Chamber:
 - Gas detector, avalanche mode
- Electronics same as STAR-TOF
- Acceptance: 45% at |η|<0.5
 - Covers the magnet iron bars with gaps in-between uncovered

R&D since 2007; Construction since 2010 **Significant contribution from China, India**

MTD Physics Motivation

- Di-muon pairs from QGP thermal radiation, cc, quarkonia, light vector mesons in QGP
- Single muon from semi-leptonic decay of open heavy flavor.
 Unique: e-mu correlation for heavy flavor at low pT -> medium.
- No photon-conversion, much less Dalitz decay background contribution, and less radiative energy loss in detector than electrons -> excellent mass resolution.

2013 DOE Early Career Research Program awarded to Lijuan Ruan "Mid-rapidity Dilepton Measurements at RHIC with the Muon Telescope Detector at STAR"

Quarkonia from MTD

1) **Upsilon at RHIC:** unique, no regeneration, only initial production

2) MTD at STAR: $\Upsilon => \mu\mu$, no Bremsstrahlung tails, clean separation of the excited states

MTD Performance in 2012-2013

- Status and plan: 2012–10%; 2013–63%; 2014–100%
- Commissioned single muon, di-muon and e-mu triggers (event display for Cu+Au collisions)
- Optimized threshold settings, ~90% efficiency
- Achieved stable operation conditions

STAR Detector in 2014+

Particle Identifications in 2014+

Multiple-fold correlations for identified particles!

STAR Decadal Plan

- (1) *Properties of the sQGP
- (2) *Mechanism of energy loss
- (3) Is there a critical point, and if so, where?
- (4) *Novel symmetry properties
- (5) *Exotic particles
- (6) Spin structure of the nucleon
- (7) How to go beyond leading twist and collinear factorization?
- (8) What are the properties of cold nuclear matter?

STAR Decadal Plan

- (1) *Properties of the sQGP
- (2) *Mechanism of energy loss
- (3) *Is there a critical point, and if so, where?
- (4) *Novel symmetry properties
- (5) *Exotic particles
- (6) *Spin structure of the nucleon
- (7) *How to go beyond leading twist and collinear factorization?
- (8) *What are the properties of cold nuclear matter?

To answer those questions one needs Beam Energy Scan Phase II, polarized *p+p*, *p+A*, *e+p*, *e+A* collisions & a upgraded STAR detector!

Outline

- Introduction
- On-going upgrades and physics goals
 - Heavy Flavor Tracker
 - Muon Telescope Detector
- Middle- and longer term plans
 - Forward upgrades
 - eSTAR for eRHIC
- Summary

Middle-Term (2016+) Plan

- Detector Upgrades:
 - TPC Inner Sector Upgrade
 - Forward EM+Had Calorimeter System
 - GEM or Si tracking in the very forward region
 - PID Detector Meson/Baryon separation
- Physics Focuses:
 - Beam Energy Scan Phase II program
 - Forward photon/electron/jet(leading hadron)
 - p+p -- transverse spin dynamics (transversity function and Collins FF, twist-3)
 - pp/pA -- Drell-Yan, h-h, gamma-h correlations (initial conditions, gluon saturation)
 - AA -- Forward HQ NPE R_{AA} and eta dependence

TPC Inner Sector Upgrade (iTPC)

- Current pad plane layout with 13 rows and gaps
 - only 13 maximum possible points
 - only reads ~20% of possible gas path length
 - Inner sectors essentially not used in dE/dx
- Essentially limits effective acceptance to $|\eta| < 1$

TPC Inner Sector Upgrade (iTPC)

Fill all inner sector with active pads -> better tracking and dE/dx PID for |h|=1.0-1.7 region, broad impact on

transverse spin physics

hyperon and exotic particle searches high p_{τ} identified particles

iTPC Upgrade:

- 1. MWPC (SDU/SINAP)
- 2. Mechanics (LBL/BNL)
- 3. Electronics (BNL/ALICE)
- 4. Schedule 2017

Essential for both BESII and eSTAR physics

STAR forward instrumentation upgrade

- Forward instrumentation optimized • for p+A and transverse spin physics
 - **Charged-particle tracking**
 - e/h and y/π^0 discrimination
 - **Baryon/meson separation**

L. Eun "STAR Forward Upgrade" on Tuesday

Physics Deliverables (EIC whitepaper)

T.Ullrich "The Electron Ion Collider Physics Program" on Wednesday 2

Physics Deliverables (EIC whitepaper)

STAR forward instrumentation upgrade

E. Sichtermann "eSTAR Upgrades" on Tuesday

Forward and eSTAR R&D Plans

- Map the physics cases from EIC whitepaper to eSTAR
- Possible R&D projects:
 - 1. Tracking (hadron side, pA/pp, eSTAR)
 - 2. Calorimetry (hadron side, pA/pp, eSTAR)
 - 3. Tracking+eID (electron side, eSTAR)
 - 4. End-Cap TOF (electron side, eSTAR)
 - 5. Very forward electron ID (electron side, eSTAR)
 - 6. Roman Pots II (pA/pp, eSTAR)
- On-going Simulation of feasibilities
- Discuss with CAD and EIC TF on IR design and detector R&D
- eSTAR LOI by Sep 30, 2013.

Build on the successful current detector. Evolution Not Revolution!

Summary

- 1) STAR at RHIC: Dedicated facility/Detector for studying matter with QCD degrees of freedom:
 - Properties of QGP
 - Sea quark and gluon contributions to nucleon spin
- 2) Near Future: HFT, MTD
 - Heavy flavor production, collectivity and energy loss
 - Resonance-Medium interaction, Chiral symmetry restoration
- 3) Middle term: BES-II, forward upgrades (~2016)
 - QCD critical point, phase boundary, transition to eSTAR
- 4) Longer term: eSTAR (~2020)
 - Partonic structures of nucleon and nuclei
 - Dynamical evolution from cold nuclear matter to hot QGP

Upgrade Plan (now - 2025)

Operations

A fruitful future ahead of (e)STAR and (e)RHIC!