Open Heavy Flavor Measurements at RHIC with STAR

Santa Fe Jets and Heavy Flavor Workshop, January 11-13, 2016

Zhenyu Ye^{1,2} (for the STAR collaboration)

University of Illinois at Chicago
Central China Normal University

Heavy Flavor Quarks

Heavy quark tomography

- produced mostly from initial hard parton scatterings at RHIC energies; exposed to the whole evolution of the QGP
- total yield or mass not (significantly) altered within the QGP

Sensitive to parton-medium interactions and medium properties

- Comparing light, charm and bottom to disentangle radiative vs collisional energy losses
- Extraction of temperature-dependent parton transport properties needs precise experimental data on heavy flavor production from RHIC

Open Charm Production at RHIC

Heavy flavor quarks can serve as calibrated probes for the QGP at RHIC:

- production in p+p collisions are described by pQCD calculations
- produced mostly in the initial hard scatterings at RHIC energies

Open Charm Production at RHIC

Heavy flavor quarks can serve as calibrated probes for the QGP at RHIC:

- production in p+p collisions are described by pQCD calculations
- produced mostly in the initial hard scatterings at RHIC energies
- has only a small contribution from gluon splitting

STAR Experiment at RHIC

STAR Heavy Flavor Tracker

PiXeL detector (PXL)

- two layers of thin Monolithic Active Pixel Sensors with 356M 20.7x20.7 μm pixels
- excellent DCA resolution for HF studies

Intermediate Silicon Tracker (IST)

 one layer of fast readout single-sided double-metal silicon strip detector

Silicon Strip Detector (SSD)

 existing one layer of double-sided silicon strip detector with electronic upgrade

Detector		Radius	Hit Resolution	Radiation
		(cm)	R/φ - Ζ (μm)	length
SSE)	22	20 / 740	1% X ₀
IST	•	14	170 / 1800	<1.5 %X ₀
PXL		2.8/8	6/6	~0.4 %X ₀

STAR Heavy Flavor Tracker

A factor of ~4 improvement in D⁰ significance by the HFT. First results on D[±] and D_s.

New Results from the HFT – $D^0 R_{AA}$

R_{AA}(D)>1 for p_T~1.5 GeV/c

Charm coalescence with a radially flowing bulk medium

 High p_T: significant suppression in central Au+Au collisions.

Strong charm-medium interaction

 Improved Au+Au precision at high p_T thanks to the HFT. R_{AA} at low p_T with Run14 Au+Au and Run15 p+p HFT data are underway.

STAR D⁰ 2010/11: PRL 113 (2014) 142301

New Results from the HFT – $D^0 R_{AA}$

R_{AA}(D)>1 for p_T~1.5 GeV/c

Charm coalescence with a radially flowing bulk medium

 High p_T: significant suppression in central Au+Au collisions.

Strong charm-medium interaction

•
$$R_{AA}(D) \sim R_{AA}(\pi)$$
 at $p_T > 4 \text{ GeV/c}$

Similar suppression for light partons and charm quarks at high $\ensuremath{p_{\text{T}}}$

STAR D⁰ 2010/11: PRL 113 (2014) 142301 STAR π 0-12%: PLB 655 (2007) 104

New Results from the HFT – $D^0 v_2$

• Finite $D^0 v_2$ for $p_T > 1 \text{ GeV/c}$

New Results from the HFT – $D^0 v_2$

Finite D⁰ v₂ for p_T>1 GeV/c

Favors charm quark diffusion

Theory curves: latest calculations from private communications TAMU: PRC 86 (2012) 014903, PRL 110 (2013) 112301

New Results from the HFT – $D^0 v_2$

• Finite $D^0 v_2$ for $p_T > 1$ GeV/c

Favors charm quark diffusion

• Lower than light hadron v₂

Indicates that charm quarks are not fully thermalized with the medium

New Results from the HFT - D_s

- Strangeness enhancement in heavy-ion collisions is expected to affect the yield of D_{S:} relative increase of D_S yield than D⁰ predicted.
- Elliptic flow of D_S < D⁰ is expected due to earlier freeze out of D_S.

New Results from the HFT - D_s

 Strangeness enhancement in heavy-ion collisions is expected to affect the yield of D_{S:} relative increase of D_S yield than D⁰ predicted:

The ratio of D_S/D^0 yield measured in Au+Au collisions is found to be higher than that in p+p collisions from PYTHIA

 Elliptic flow of D_S < D⁰ is expected due to earlier freeze out of D_S:

First measurement of $D_S v_2$ in heavy-ion experiment. More data are needed to draw conclusion.

Comparison with LHC Results

• D meson R_{AA} @ RHIC ~ R_{AA} @LHC at p_T >4 GeV/c

Strong charm-medium interaction at RHIC and LHC

Comparison with LHC Results

 D meson R_{AA}@ RHIC ~ R_{AA}@LHC at p_T>4 GeV/c

Strong charm-medium interaction at RHIC and LHC

- D⁰ v₂ LHC results are compatible with light flavor v₂
- $D^0 v_2$ STAR results are lower than light flavor v_2

Charm thermalized at LHC energy but not fully thermalized at RHIC?

 More precise data and systematic theoretical studies of heavy flavor production at RHIC and LHC will be very helpful.

Comparison with Theory

TAMU: non-perturb. T-matrix $(2\pi T)D = 2-11$

SUBATECH: perturb.+resummation $(2\pi T)D = 2-4$

DUKE: Langevin simulation with input parameter tuned to the LHC data $(2\pi T)D = 7$

	D × 2πT	Diff. Calculation
TAMU	2-11	T-Matrix
SUBATECH	2-4	pQCD+HTL
Duke	7	Free parameter

STAR D^o 2010/11: PRL 113 (2014) 142301 Theory curves: latest calculations from private communications DUKE: PRC 92 (2015) 024907 A.Andronic arXiv:1506.03981(2015) Zhenyu Ye

Comparison with Theory

Models with charm diffusion coefficient of 2-~10 describe STAR D⁰ R_{AA} and v₂ results. Lattice calculations are consistent with values inferred from data.

> STAR D⁰ 2010/11: PRL 113 (2014) 142301 Theory curves: latest calculations from private communications DUKE: PRC 92 (2015) 024907 A.Andronic arXiv:1506.03981(2015) Zhenyu Ye

Comparison with Theory

Models with charm diffusion coefficient of 2-~10 describe STAR D⁰ R_{AA} and v₂ results. Lattice calculations are consistent with values inferred from data.

More precise results expected from STAR Run15 (pp, pAu) and Run16 (AuAu) data: improved p+p baseline, CNM, a factor of ~3 increase in Au+Au data size, improved DCA resolution at low p_T with Al cables for PXL Zhenyu Ye

STAR Heavy Flavor II (2021-2022)

Without Bottom from RHIC, can we claim that we fully understand the energy loss mechanisms, or mass- and temperature-dependent parton transport coefficients of the QGP? Does b quark diffuse in the QGP at RHIC energies and if so how much?

STAR Heavy Flavor II (2021-2022)

Precise bottom measurements with the HFT+ to complete the heavy flavor physics at RHIC. Complementary to ALICE HF and sPHENIX Jet and Upsilon programs.

Summary and Outlook

STAR HFT in Run14-16

Run14: Au+Au, results based on ~70% stat. Run15: p+p baseline, p+Au for CNM effects Run16(+14): x4 Au+Au data size than QM15, inner PXL 0.5->0.4%X₀ with Al cables

- Precise charm results
- First bottom results

Summary and Outlook

STAR HFT in Run14-16

Run14: Au+Au, results based on ~70% stat. Run15: p+p baseline, p+Au for CNM effects Run16(+14): x4 Au+Au statistics than QM15, inner PXL 0.5->0.4%X₀ with Al cables

- Precise charm results
- First bottom results

Upgraded HFT+ in 2020+

HFT+ with faster MAPS sensors will allow precise measurements of bottom quark production at RHIC through B->J/ ψ , B->D and b-tagged jets

Precise bottom results

STAR Heavy Flavor Tracker

High precision R_{AA} , R_{pA} , v_2 , correlations results for D mesons and HF leptons; Unique at low p_T -> medium thermalization, total charm production

Charm Production at RHIC

High z production is suppressed w.r.t. low z by trigger bias. The magnitude in data is reproduced by MC with direct flavor creation process. Excess at low z is from high order processes.

26

Charm Production at RHIC

Figure 1: Gluon splitting into $Q\bar{Q}$

Gluon framentation into $Q\bar{Q}$ pairs is calculable in perturbative QCD. The process is represented in Fig. 1. The gluon multiplicity of those having virtuality k^2 could be calculated as:

$$n_g(E^2, k^2) = \left[\frac{\ln(E^2/\Lambda^2)}{\ln(k^2/\Lambda^2)}\right]^a \times \exp\left\{\left[(2C_A/\pi b)\ln(E^2/\Lambda^2)\right]^{1/2}\right\} / \exp\left\{\left[(2C_A/\pi b)\ln(k^2/\Lambda^2)\right]^{1/2}\right\} - \exp\left(\left[(2C_A/\pi b)\ln(k^2/\Lambda^2)\right]^{1/2}\right\} - \exp\left(\left[(2C_A/\pi b)\ln(k^2/\Lambda^2)\right]^{1/2}\right) + \exp\left(\left[(2C_A/\pi b)\ln(k$$

where $a = -1/4 \times [1 + (2N_f/3\pi b)(1 - C_F/C_A)]$, $b = (11C_A - 2N_f)/12\pi$. The average number of $Q\bar{Q}$ pairs in a gluon jet is:

$$R_{Q\bar{Q}}(E) = \int_{4m^2}^{E^2} \frac{dk^2}{k^2} \frac{\alpha_s(k)}{2\pi} \int_{z_-}^{z_+} \frac{1}{2} [z^2 + (1-z)^2 + \frac{2m^2}{k^2}] dz \times n_g(E^2, k^2)$$

where $z_{\pm} = (1 \pm \beta)/2$ and $\beta = \sqrt{1 - 4m^2/k^2}$. *m* is the heavy quark mass. In my calculation for z_H (charm hadron *z*) coverage, the charm quark fragmentation function is used as the Peterson fragmentation function:

$$D_Q^H(z) \propto \frac{1}{z} (1 - \frac{1}{z} - \frac{\epsilon_Q}{1 - z})^{-2}$$

STAR PRL 97 (2006) 252001

Charm Production at RHIC

Charm production in jets at $p_T \sim 2-10$ GeV/c has a small contribution from gluon splitting and is dominated by jets initiated by charm quarks

HFT+ Upgrade plan (2021+)

HFT+ upgrade motivation:

- Measure bottom quark hadrons at the RHIC energy
- Take data in higher luminosity with high efficiency

HFT+ detector requirements:

