Pion-Kaon Femtoscopy in 200 GeV Collisions in STAR at RHIC

Yan Yang for the STAR Collaboration (IOPP/HIT and Ohio State University)

Outline

- Motivation: Non-identical particle correlation probe emitting asymmetry
- Observables: Double Ratio and Spherical Harmonics Decomposition (SHD)
- Data Set & Preliminary Results
- Summary & Outlook

Motivation

Identical particle femtoscopy measures size and shape of homogeneity region, plus collective flow

- Non-identical particle femtoscopy probes emission asymmetry, sensitive to collective flow.
 - kaons are emitted closer to the edge of a flowing source than pions

Annu. Rev. Nucl. Part. Sci., 2005

Motivation

• Results from STAR pion-kaon correlation have shown that strong radial flow is built in central Au+Au collisions.

Our goals:

- Improved measurement in Au+Au, using upgraded STAR PID capabilities
- Look for same signal in p+p collisions: can we see flow in p+p at RHIC??

Correlation Function (CF) – Double Ratio

CF – Spherical Harmonics Decomposition (SHD) $C(\vec{k^*}) = \sqrt{4\pi} \sum_{lm} C_{lm}(\vec{k^*}) Y_{lm}(\theta, \phi)$

side

C₁⁰ – related to long direction. Midrapidity – should be zero due to symmetry

$$Y_1^1 = \frac{1}{2} \sqrt{\frac{3}{2\pi}} (\cos\phi\sin\theta + i\sin\phi\sin\theta)$$

valuable cross-checks for artifacts, non-physics correlations

 $Re(C_1^{-1})$ – related to out direction, asymmetry,

 $Im(C_1^{-1})$ – related to side direction, should be zero due to symmetry

STAR

Data Set

~180M 200 GeV Au+Au collisions from RHIC Run10

- collision vertex within 30 cm of TPC center
- 0-5% centrality

~300 M 200 GeV p+p collisions from RHIC Run9

- collision vertex within 50 cm of TPC center
- minimum bias trigger
- Standard STAR and STAR-HBT cuts applied
- PID by combining TOF and TPC information: $p_T = 0.15-1.5 \text{ GeV/c}$

Double Ratio

Double Ratio

✓ double ratio for side, long consistent with 1

- sensitive to merging/splitting/artifacts
- ✓ Double ratio in out is consistent with STAR published result at 130 GeV
 - reflects flow-induced emission asymmetry
 10/27/11 DNP 2011, East

 \checkmark double ratio for side, long consistent with 1

- ✓ non-trivial structure in out
 - both in data and PYTHIA
 - under study: not sufficiently understood to extract femtoscopic information

SHD representation: C_{00} (overall size)

- ✓ low-k* suppression (enhancement) for like-sign (unlike-sign) pairs
- \checkmark scale of correlation ~ 6 fm source 10/27/11

- PYTHIA and data: large-scale structure
 - similar but not identical
- low-k* suppression/enhancement in data superimposed on PYTHIA background??
- $K^* \rightarrow K + \pi$ visible (low combinatorics)

SHD representation: $Re(C_{11})$ (emission asymmetry)

✓ Consistent with flow-induced asymmetry

- $\checkmark\,$ confirmed that C10 and Im(C11) vanish
 - sensitive to merging/splitting/artifacts

- PYTHIA and data: large-scale structure
 - similar but not identical
- K*→ K+π visible (low combinatorics)
- structures and difference to PYTHIA under study

DNP 2011, East La

Summary and Outlook

- Pion-kaon correlations: unique opportunity to probe flowinduced geometric substructure
- > STAR Time of Flight: crucial for improved, detailed study
- Preliminary 200 GeV Au+Au femtoscopic correlations consistent with published 130 GeV data
- First preliminary pion-kaon correlations in 200 GeV p+p collisions reported
 - Nontrivial non-femtoscopic structure in correlations, both in data and PYTHIA
 - Insufficiently understood to allow femtoscopic interpretation at present
 - stay tuned!
- Centrality dependence will be studied in near future.

Back up

$SHD - Im(C_{11})$

Back up

 $SHD - C_{10}$

