PROCEEDINGS

OF SCIENCE

Using constraint programming to resolve the
multi-source / multi-site data movement paradigm
on the Grid

Michal ZEROLA *
Nuclear Physics Ingtitute, Academy of Sciences, Prague
E-mail:zer ol a@rat fyz. cz

Jérbme Lauret
Brookhaven National Laboratory
E-mail: j | aur et @nl . gov

Roman Bartak
Faculty of Mathematics and Physics, Charles University, Prague

E-mail: bartak@ti.nff.cuni.cz

Michal Sumbera

Nuclear Physics Ingtitute, Academy of Sciences, Prague

E-mail: sumbera@j f. cas. cz
In order to achieve both fast and coordinated data trarsfaltaborative sites as well as to create
a distribution of data over multiple sites, efficient dataveiment is one of the most essential as-
pects in distributed environment. With such capabilitielsaand, truly distributed task scheduling
with minimal latencies would be reachable by internatigndistributed collaborations (such as
ones in HENP) seeking for scavenging or maximizing on geaycally spread computational
resources. But it is often not all clear (a) how to move datamdwvailable from multiple sources
or (b) how to move data to multiple compute resources to aeha@ optimal usage of available
resources. Constraint programming (CP) is a technique fdificial intelligence and opera-
tions research allowing to find solutions in a multi-dimemsil space of variables. We present a
method of creating a CP model consisting of sites, links &edt attributes such as bandwidth
for grid network data transfer also considering user tasksaat of the objective function for an
optimal solution. We will explore and explain trade-off Wweten schedule generation time and
divergence from the optimal solution and show how to imprane render viable the solution’s
finding time by using search tree time limit, approximatiaestrictions such as symmetry break-
ing or grouping similar tasks together, or generating sege®f optimal schedules by splitting
the input problem. Results of data transfer simulation &mhecase will also include a well known
Peer-2-Peer model, and time taken to generate a schedulglasswtime needed for a schedule
execution will be compared to a CP optimal solution. We wditlgionally present a possible im-
plementation aimed to bring a distributed datasets (malpurces) to a given site in a minimal
time.

X1l Advanced Computing and Analysis Techniquesin Physics Research

November 3-7, 2008
Erice, Italy

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

1. Introduction

1.1 Problem area

Computationally challenging experiments such as the ama the High Energy and Nuclear
Physics (HENP) community have developed a distributed ctimgp approach (a.k.a. Grid com-
puting model) to face the massive needs of their Peta-sgpkriments. The era of data intensive
computing has surely opened a vast arena for computer istéettt resolve practical and exciting
problems. One of such HENP experiments is the STfSdlenoidal Tracker at Relativistic Heavy
lon Collider [1]) experiment located at the Brookhaven Nadil Laboratory (USA).

In addition to a typical Peta-byte scale challenge and lamyeputational needs this experi-
ment as a running experiment acquires a new set of valuapriexental data every year, introduc-
ing other dimension of safe data transfer to the problemmRte yearly data sets, the experiment
may produce many physics-ready derived data sets whidr dificcuracy as the problem is better
understood and as time passes. Thus, demands for a latgd-st@age management and efficient
scheme to distribute data grows as a function of time, whileh® other hand, end-users may
need to access data sets from previous years and consgoaerdks data at any point of the data
production timeline. Coordination is needed to avoid ran@ecess destroying efficiency.

The user’s task is typically embarrassingly parallel; thah single program can risitimes on
a fraction of the whole data set split intbsub-parts with usually no impact on science reliability,
accuracy, or reproducibility. For a computer scientisg ibsue then becomes how to split the
embarrassingly parallel task intd jobs in the most efficient manner while knowing the data set
is spread over the world and/or how to spread 'a’ dataset #mck best the data for maximal
efficiency and fastest processing of the task.

The purpose of this work is to design and develop an autonsteteém that would efficiently
use all available computational and storage resourcesll lelieve end users of making decisions
among possible ways of their task execution (which includeating and transferring data to de-
sired sites that appear optimal to user) while preserviirgdas. Users’ knowledge of the whole
system and data transfer tools will be reduced just to thenmomication with the future planner
that will guarantee its decision to spread the task and @&$coser chosen sites was, under current
circumstances, the most efficient and optimal.

1.2 Milestones

Rather than trying to solve the problem directly from a taskesluling perspective within a
grid environment, we split the problem into several sta@gsisolating the data transfer/placement
and the computational challenges from each other, we gepportunity to study the behavior of
both sets of constraints separately.

Individual tasks depend on a datasets which size has to Isidesad as well, since the time
required for its staging and transfers is also significamer&fore, thdirst milestone is to design
and develop a data transfer planner/scheduler. For a gEset needed at a given site, its aim
is to create a plan with an objective to prepare and move the fibm that dataset within the

*Speaker.
Lhttp://www.star.bnl.gov

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

shortest time. The next requirement is to define and achawstiare transfers within a multiuser
environment. This means that if one user asked for a huge @obdata to be transferred at a site,
then another user who asked just for one file shouldn’t wdit thre first user’s plan is finished.

Thenext milestonegeneralizes data transfer planning between sites. Thegdhis stage is
not to transfer files to one particular site, but do the trantf several destinations. More precisely,
the planner's goal is to achieve presence of each file (froersugnput task) at one out of all
possible destinations, while still having the objectivemind, to minimize the finish time of the
last file transfer the user waits for.

The second milestone is highly correlated with fim@l milestone- scheduling the data trans-
fers together with particular tasks (jobs) on a grid. Theaskbis not finished after a file is trans-
ferred at a destination site, but when the user’s job exdaittehe same site (and dependent on this
file) is finished. Thus, the planner still has the freedom afosling a destination site for each file,
but it has to consider that each site has a specific charstatesf its computational performance.
These attributes include, for example, the number of av@l&PUs or the actual load, so it can be
more effective to transfer some files over the slower link® ¢computationally high performance
site (or vice versa). The final objective is to minimize thesfintime of the last user’s job. In this
article we focus on the first milestone.

2. Problem formalization

In this section, we will present a formal description of tlelgem and an approach based on
Constraint Programming technique used in artificial irdethce and operations research. Using
this technique, we search for assignment of given varigibbes their domains, in such a way that
all constraints are satisfied and value of an objective fands optimal [4].

We will introduce the transfer network consisting of siteéding information which files are
available at the site. For each file we will search for a padkileg to the destination and time slots
for each link on the transfer path, when a particular filegfanshould occur.

The network consists of a set of noddsand a set of directed edgé&s The setOUT(n)
consists of all edges leaving nodethe setiN (n) of all edges leading to node Input received
from a user is a set of file names needed at a destinatiodesite We will refer to this set of file
names as to demands, representedby-or every demand we have a set of sourcesrig(d)),
sites where the filed) is already available. We will use one decision variablesfegry demand and
link of the network (edge in graph). TH®,1} variableXye denotes whether demanids routed
over edgee of the network. The second variats@rtye denotes start time of transfer corresponding
to the demandl over edgee. More approaches can be found in [6].

: size(d)
x,Min._max (startde + Speed(e) ©) Xde (2.1)
en‘ade
ecUOUT (n|neorig (d)) ecUIN (n|neorig (d))
ecOUT (dest(d)) ecIN (dest(d))

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

vd € D,vn ¢ {orig(d) Udest(d)} :

Xe<l, Y X<l Y Xae= 3 X (2.4)
ecOUT(n) ecIN(n) ecOUT(n) ecIN(n)
Vec E,vd € D: Xge = 1:(|[Startge, start +M]—0 (2.5)
) . e— 1. des de speed(e) = .
endge
YneN,vdeD: (start + SiZe(d))xd< z sartge - Xg (2.6)
) . de T T/~ | Mde> de * /\de .
eciN(n) speed(e) ecOUT ()
endge
Xge € {0,1}
gartge € A

The path constraints (2.2, 2.3, 2.4) state that there is a single path for each dén(gath
starting right in one of origin sites, leading to the dediorg. Equation (2.5) ensures there is only
one active file transfer over every edge in time. The last tguatates that a transfer of the file at
any site can start only if the file is already available at fte (€q. 2.6)(i.e., a transfer of the file to
this site has finished). The objective (Eg. 2.1) is to minartize latest finish time of transfer over
the whole files.

2.1 Constraint model

For implementation of the solver we use Chaga Java based library for constraint satis-
faction problems, constraint programming and explanabased constraint solving. Among 70
available constraints Choco also provides a rich set oftcaings for scheduling and resource al-
location needed for this project. Closer illustration ofesal Choco uses can be found in [2], [3],
and [7]. In addition, choosing a Java based platform allawsh easier integration of our planner
with the tools currently used in the STAR environment.

Constraints introduced in the previous section were usedtty via appropriate Choco struc-
tures, except the equation 2.5, which ensures at most ditgkeansfer in any time on any link.
For this, we used theumulative scheduling constraint and notation of tasks and resoufi@eks
are represented by their duration, by ranges for startingesading times, and by resource con-
sumption respectively. They are allocated to the resosiyéeéuch a way that at any time resource
capacities cannot be exceeded.

In our case, each link acts as a separate resource with bapdainary resource) and each file
demand creates a single task on every resource, which@uiddpends on the current link speed
(resource characteristic) and consumption of the resaroaesponds to the value of variabie
i.e. no consumption if the transfer path for demand doesmaude current link (resource), or
consumption 1 otherwise. Figure (1) depicts one possiliiedide for transferring a file=() with
an origin atSite; andSite;, to destinatiorDest. Values of theX variables define the path, while the
resource profile for each link is on the right side of the figure

2http://choco.sourceforge.net

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

Site, Link,
X[F)1]=0
Link‘g —_r
XI[F|[2) =1
Sites Site; Llnkg —r,
X[F)[8] =1
Link;
X[F][4] =0
Dest Thn:e

Figure 1: Example of a schedule solution with fileand its origin aSite; andSite,. VariablesX represent
selected path transfer, in this case via lihksk, andLinks. On the right side is a corresponding Gantt chart
of the schedule.

The search strategy, following Choco notation, is splibitwo goals. First one is to find
assignment foX variables, i.e. paths for each transfer, while the second #locate time slot,
assigngtart variables, for each transfer at chosen links. For both gtiedsdefault minimum
domain’ variable selection andncreasing value' value selection heuristic were used.

3. Direct connections

In order to closely analyze the problem and its scale as weatha behavior of the technique
we used, several restrictions that simplify the problemenietposed to the model. We started
to explore the network, where ondirect connectionsfor data movement are allowed. In other
words, file can not be transferred from its origin to the dedton by a path longer than one.

One can think that such a restriction shrinks the searchespaormously, but closer look
reveals that the number of possible combinations is stijida

Let’s suppose that we have a network of 5 sites, all conndotéik destination and 100 files
available at each sitdafig(f)| =5). The number of decision variablesis therefore 500
ID| % |E|). Even if an upper bound for all possible combinationr¥{pis reduced by a propagation
to 519 (solver has a freedom of 5 choices of an origin for each file)tésforce methods can run
‘forever'.

With the intent to stay close to reality, we fixed the numbesitds to 5, which approximately
represents the number of sites currently available in th&eRSaxperiment. For each link we intro-
duced adowdown factor that influences the transfer time needed to move the datatluigdink.

A slowdown factor 1 means that file of size 1 unit can be transfein 1 unit of time, but with a
slowdown factor 4 only in 4 units of time, etc...

Considering the file demands, we studied the following caag®very file is available only
at one particular site; b) file is available at sites given pyabability function that represents the
reality; c) file is available at all sites. We will name thesemarios aglistinct, weighted and
sharedrespectively. For all cases we fixed the file size to a 1 uwit dll files have the same size.

3.1 Shared links

So far we have assumed that all links incoming or outgoingnfamy site have their own band-
width (slowdown factor) that is not affected by other onegwéver, in reality this is not always

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

feasible, since several links leading to a site usuallyesilae same router and/or physical fiber
which bandwidth (capacity) is less than the sum of their oatues. Hence, simultaneously one
cannot use all links at their maximum bandwidths. We exptieissconstraint by adding an addi-

tional resource per each group of shared links. Capacityeof¢source will be the bandwidth of a
shared link or a router, while tasks correspond to the sdbddtansfers using any link belonging

to this group with consumptions equal to its slowdown factor

3.2 Reducing the search time

We studied also several techniques for reducing the timet sh&ing a search.

One of the common techniques for reducing the search trestestihg and breaking variable
symmetries. This is usually done by adding variable symynateaking constraints that can be
expressed easily and propagated efficiently using lexéqggc ordering. One idea that can be
applied in the studied case (direct connections and fixedifitg is following: if two files have the
same origin sets, links selected for the first file and for #tmad one respectively must be ordered.
The reason behind is that both files must be transferred tdektnation and their size is equal,
it is not necessary to also check the symmetrical swappex] saxe the transfer time can not be
shorter.

Another approach is based on the idea, where instead ohéegifor a global optimal solution
that can be very computing time consuming, we try to find aimmgdtsolution for smaller parts of
the input whereas and due to combinatorial effects, the duatl tmes spent to solve a portion
of the plan will be just a fraction of the time needed otheeaiar the full plan. This principle
is even more suitable for our needs, since network link speady in time and some sites can
be down after the schedule is produced. Generally, traivsfeall data files takes a significant
amount of time and, during this time, a lot of environmentahditions (site status, network load)
can be different to the ones the scheduler considered attiieriing. Thus the computed optimal
schedule for the full input is not necessarily the best apgiias after a lapse time, it may no longer
be valid due to externally rapidly changing conditions. @kscheduling also allows for a better
fair-shareness as new requests by users may be bundledext @gnlanan reasonable) time without
the need to have all previous requests being honored firstifwhay happen after a long period of
time, hence a slow reaction time of the system allowing at #&3FO approach).

One of the requirements for being able to split the input files chunks and producing an
optimal schedule is for each chunk to be resolved indepdlydetile propagating the results to
the next chunk. More precisely, one of the results of the ciglee for a given chunk of files is
the information of the computed starting/ending times faetefile using particular links. In other
words, to be able to consider the historical usage of thesjittie current solver receives times at
which the links will be busy, thus further scheduling for munt chunk cannot place file transfer
in these time-slots (information propagation is henceea)i We implement this by allocating a
“fake tasks” that is, hypothetical tasks with fixed startamgd ending times that were propagated
from previous schedules (Figure 2).

Also limits can be imposed on the search algorithm to avoehdjmg too much time in the
exploration. One of them is fixing the time limit on a searaketr When the execution time is
equal to the time limit, the search stops whether an optimlattisn is found or not. One of the

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

Chunk 1 Chunk 2 Chunk n
Input files: . o o 6 o0 oo o006 oo o0 oo
Link, | 12 Links | ——
Link; 12 next chunk Link, T Fake (fixed) tasks
Link, il Linky | a5
Link; A Link, (—a= '
Time Time

Figure 2: Allocating fake tasks according to the previous schedutgut files are split into batches and
each batch (chunk) is planned separately respecting thitse$ previous calls.

algorithms we studied was based on this, with a time-linmi¢dirly dependent on the number of
files in a request.

4. Directed (simple) paths

Considering the model, no changes are necessary to penfoonér to allow solver search
for transfer paths longer than one. However, since dataraesit takes storage space from the
intermediate site, one must be sure that during file trarfeben site A to C, using site B, there is
enough space at the intermediate site B to hold the file irsitran

4.1 Storage capacity

In order to respect the storage restrictions we introdueentixt attribute for each site, the
available (free) space, or the storage capacity. All the tilaring the execution of a schedule, the
storage capacity constraint for each site must be respected

For each site we consider all possible ways (pairgnbfnk and outLink how a file can be
transferred trough it). Whether or not a pair is really usedthe demand is expressed by
channelingVariabl e, which also defines the consumption of the task (Figure: 3).

startqinLink endtdﬂll’,Liﬂk Free space
e space

size(d) x channelingV ariable

" Time

Figure 3: Storage resource and representation of the consumptiofred apace at site during transferring
a file d through it. The resource consumption is defined by start tfrthe file transfer oveimLink and
finish time of its transfer ovesutLink.

If the pair is not used, the consumption is set to zero an@georesource is invariable to this
task, otherwise the consumption is set to the file size.

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

5. Comparative studies

In this section we present the performance comparison @rakmethods of the CSP solver
introduced in previous sections as well as of the Peer-2-$hamilator. We will also show an effect
of one constraint (storage based) for a simple paths casaraegample of the optimal schedule
produced by the solver.

5.1 Peer-2-Peer simulator

To provide a base comparison with the results of our CSP tsadeer we chose to implement a
Peer-2-Peer (P2P) model. This model is well known and sefidgsused in similar fields like file
sharing, telecommunication, or media streaming. We implaed a P2P simulator by creating the
following work-flow: a) put an observer for each link leading to the destinatigrif an observer
detects the link is free, it picks up the file at his site (liniring node), initiate the transfer, and
waits until the transfer is done. We introduced a heurisiicpicking up a file as typically done
for P2P. Link observer picks up a file with a smallest cardipah the sense of itgorigin|, i.e.
the file that is available at the smallest number of sites &titkire are more files available with
the same cardinality, it randomly picks any of them. Aftecteransfer, the file record is removed
from the list of possibilities over all sites. This processyipically resolved using distributed hash
table (DHT) [5], however in our simulator only simple struiets were used. Finally an algorithm
terminates when all files reach the destination, thus norebsbas any more work to do.

5.2 Results

In Figure 4, we show a comparison of times needed to produeedhedules and divergence
of the results (makespan) to the optimal solution betweearakalgorithms. We present the results
only for theweighted case with direct connections and will only describe the itatale features
for the other cases. Weights (probabilities) that were digesites were 1,0.6,0.01, and Q01.

The X axes denote the number of files in a request whiiis the time (in units) needed to
generate the schedule and percentage loss on optimalosolufiie can see that time to find an
optimal schedule without any additions grows exponentiatid is usable only for a limited number
of files, 50 in the weighted case and 20 in the shared case.diffésence is induced by a higher
number of possible configurations as long as any site canlbetesg as an origin. By introducing
symmetry breaking, the solving time is improved, but stit nsable for more than 200 files. Using
a time-limit on the other hand we are moving apart from annogtisolution with increasing files
in request, which is even more visible in the shared cases §htiing the time-limit as a linear
function to the number of files, while using a default seatchtsgy based on minimal domains, is
not sufficient.

In contrast, splitting the input into chunks is giving thesbperformance results both in the
running time and also in the quality of the makespan. Everdging by chunk of size 1, i.e. file
by file, doesn’t produce worse result than using larger chutthis is explained and mainly due to
the use of the propagation of information from previous stapd link conditions (and statistically
large samples, rendering localized differences imposddbtifferentiate).. While we note as well
the efficacious performance of a simple P2P algorithm, itaéstivto mention that this model is

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

usable only in a direct connection case, while our intenb isttidy more complex networks with
much more restrictions and hence, this approach cannotdiaed to first order.

Time to produce a schedule (weighted) Makespan loss on optimum (weighted)
300 ‘ : ‘ 100 ‘ : ‘
CSPOPT ——— \ P2P —
P2P CSP timelimit -
250 CSP symmetries 4 OPT CSP chunk 1 =
CSP timelimit 80 OPT CSP chunk 6
CSP OPT chunk 1 OPT CSP chunk 16 -+~
— CSP OPT chunk 6 |
o 200 CSP OPT chunk 11 -~~~ —~
o} CSP OPT chunk 16 -~ - - X 60
\(0/ N—
150) [
Q 1)
£ S 4
100 5 8 %]
= \
50 T = e i I\
* o a e
0 l W S NP PPy S o St £, i S s T ”T""‘;m'f—'—f;;,;; 3 B

0 100 200 300 400 500 600 700 800 900 1000 60 80 100 120 140 160 180 200
Files # Files

Figure 4: Approximation of the runtime (left) and makespan loss oriroat schedule (right) for weighted
case.

To see the real effect of the storage constraint, in Ganttel@igure 5) are shown two sched-
ules (without and with enabled constraint) for the samesgafaconsidering the funnel network
displayed in the upper part of the figure with a limited avaiespace aSite; only for one file size
unit. This extreme example permits only a single transfarsiie Stes, that fills available space
until a file is fully transfered to the destinati@ite,;. After that, the space &te;s is again released
and another file can go trough.

Sitel, Sit61 Siteg

Linky Linky orig(Filey) = {Siteg, Sites} slowdown(Linky) = 2
Free orig(File;) = {Sites slowdown(Link;) = 2
space for Sites orig(Files) = {Sitey, Sites} slowdown(Links) =2
1 addi- orig(Files) = {Sitey slowdown(Links) =1
! Links orig(Filey) = {Sitey
tional
file Sitey
Schedule (without capacity constraint) Schedule (with capacity constraint)
3 L | e 3 i H
File_O . File_O
File_1 File_1
File_2 11imim File_2 l1imim
File_3 i File_3 il
File_4 File_4
2 2
i~ ~
£ =
3 3
1 1
O O
0 1 2 3 4 5 0 1 2 3 4 5 6
Time (units) Time (units)

Figure 5: Gantt chart of a schedule without storage constraintg @efi a schedule with storage constraints
(right) generated on the funnel network with limited staagpacity (up). We can see that with a constraint,
the solver is respecting the limited spaceSaes, therefore the start of a transfer Bfle4 is postponed till
Files has reached the destination.

Using CP to resolve the multi-source / multi-site data movement paradigmon the Grid ~ Michal ZEROLA

6. Conclusion

We presented an approach using a Constraint Programminglrtmthckle the problem of
efficient data transfers/placements and job allocationblpm within a distributed computing en-
vironment. Usage of constraints and declarative type ajfamming offers straightforward ways
of representing many real life restrictions which is alssslgulnerable to software coding errors
in an ever expanding framework. On the other hand, since @lsspace is usually extensive,
methods like symmetry breaking or approximations and wtdeding the scale of the problem
are fundamental. In this work, we showed that using the sdhmgof data transfers by sequence
of smaller chunks gives results close to the optimal satutind provides very acceptable running
time performance. We have further implemented severalt@inss for dealing with shared net-
work links or limited storage capacities at sites and agesllts are promising. More work will be
needed to demonstrate the full power and usability of caimdtprogramming especially in reduc-
ing search times and using smart heuristics but insofarresuits are promising. Not only such
real-life constraints can be easily modeled and the fosmabtraight forward but the results and
implementation showed a workable proof of principle of taigroach.

7. Acknowledgements

The investigations have been partially supported by the AR®Z10480505, by the Grant
Agency of the Czech Republic under Contract No. 202/07/0@¥Pthe grant LC07048 of the
Ministry of Education of the Czech Republic, by the HENP Biwns of the Office of Science of
the U.S. DOE and by the U.S. NSF.

References

[1] STAR Collaboration: J. Adams. Experimental and thdoegtthallenges in the search for the quark
gluon plasma: The STAR collaboration’s critical assesdroéthe evidence from RHIC collisions.
Nuclear Physics A, 757:102, 2005.

[2] David Benavides, Sergio Segura, Pablo Trinidad Ma#freyo, and Antonio Ruiz Cortés. Using Java
CSP solvers in the automated analyses of feature modelsalfi&mmel, Jodo Saraiva, and Joost
Visser, editorsGTTSE, volume 4143 of_ecture Notesin Computer Science, pages 399-408. Springer,
2006.

[3] Alexander Lazovik, Marco Aiello, and Rosella Gennarhdeographies: using constraints to satisfy
service requests. IAICT/ICIW, page 150. IEEE Computer Society, 2006.

[4] K. Marriott and P. StuckeyProgramming with Constraints. MIT Press, Cambridge, Massachusetts,
1998.

[5] Naor and Wieder. A simple fault tolerant distributed haable. Inlnternational Workshop on
Peer-to-Peer Systems (IPTPS), LNCS, volume 2, 2003.

[6] Helmut Simonis. Challenges for constraint programmiimgetworking. In Mark Wallace, edito€P,
volume 3258 ot ecture Notes in Computer Science, pages 13—16. Springer, 2004.

[7] Jules White, Douglas C. Schmidt, Krzysztof Czarneckiri€toph Wienands, Gunther Lenz, Egon
Wuchner, and Ludger Fiege. Automated model-based configanraf enterprise Java applications. In
EDOC, pages 301-312. IEEE Computer Society, 2007.

10

