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摘 要

高能重离子碰撞实验中一个主要的目的是为了研究量子色动力学（QCD）的相结构。在自然

界中，夸克和胶子被禁锢在强子内部，人们预测高温和高密条件下，夸克和胶子自由度可以从强子

中解禁出来，形成如同宇宙大爆炸后几十微秒产生的物质，其通常称为夸克胶子等离子体（Quark-
Gluon Plasma，QGP）。在实验室中人们通过大型加速器把重离子加速到接近光速然后使其发生对

撞，碰撞产生的能量被沉积在很小的空间内，创造出来极端高温高压的状态以期望可以产生 QGP。
为了描述强子相和 QGP 相的相变，通常人们使用一张 QCD 相图，相图可以用温度和重子化学势

来表示。从第一性原理出发的格点量子色动力学（Lattice QCD）计算表明，在零重子化学势时强

子相和 QGP 相之间的转变是平滑穿越。而在有限的重子化学势区域，由于格点 QCD 计算存在符

号问题无法给出可靠结果。很多基于 QCD 理论的研究结果表明在高重子化学势时，会存在一个一

阶相变边界，以及一个一阶相边界的终点，这个终点通常叫做量子色动力学临界点（QCD Critical
Point）。目前，临界点位置的理论计算还存在较大困难和不确定性因此，人们希望通过重离子碰撞

能量扫描实验来获得不同的温度和重子化学势，从而探索 QCD 相图的不同区域，寻找 QCD 相变

临界点和一阶相变边界。

理论预言，逐事件守恒量（如净重子数、净奇异数以及净电荷数）分布的高阶累积量是重离子

碰撞中寻找临界点的敏感观测量。在 QCD 临界点的附近，系统的关联长度会发散，而守恒荷的高

阶累积量可以敏感地反映临界关联长度的发散。另一方面，守恒量的高阶累积量可以直接与不同

守恒荷热力学敏感系数紧密相关，所以实验测量结果可以与理论模型计算直接相连。最近来自对

RHIC 能量扫描第一阶段，质心系能量为 7.7 – 200GeV 的实验数据分析显示，净质子数四阶涨落在

最中心碰撞中存在一个非单调能量依赖趋势，其具有 3.1 𝜎 的显著性，这个结果和理论预言的 QCD
临界点的信号一致。但目前结果在能量 20GeV 以下仍存在较大的统计误差，仍需要较大的统计量。

另外在低能高重子密度区域仍存在很大空缺，在低能区域完成高阶涨落的测量对于寻找 QCD 临界

点至关重要。本论文总结了对 STAR 在 2018 年固定靶实验采集的金金碰撞 √𝑠NN = 3GeV 的实验

数据的质子数高阶涨落的测量。论文将讨论具体的数据分析过程、方法、遇到的问题，以及最终的
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测量结果和结论。

论文由以下几个章节组成：第 1 章介绍了研究动机以及实验观测量，即累积量的定义、模型的

基线等。第 2 章介绍了 RHIC-STAR 实验装置，以及简要介绍了本分析中用到的探测器。第 3 章介

绍了 3GeV 的数据集，数据筛选过程，分析方法如探测器效率修正、事件堆叠效应修正和初始体积

涨落修正等。第 4 章展示了对金金碰撞 √𝑠NN = 3GeV 在快度 −0.9 < 𝑦 < 0 及横动量 0.4 < 𝑝T < 2.0
GeV/𝑐 的质子数分布高阶累积量测量结果，并和多个模型计算结果比较讨论。我们对最终的实验结

果进行了探测器效率、堆叠事件修正和初始体积涨落修正，并把实验结果与强子输运模型、流体动

力学模型的计算结果相比较，主要有以下结论：（1）对累积量使用体积涨落进行修正，结果显示

仍可能存在未修正的效应，但体积涨落效应对最中心碰撞的 𝐶3/𝐶2 和 𝐶4/𝐶2 测量结果可能影响较

小；（2）质子数分布高阶累积量的实验测量结果，其趋势可以较好地被强子输运模型的计算结果

所重现，这预示着 3GeV 可能是强子散射占主导的能量点，QCD 临界点如果存在并且可以被找到

的话，可能仅存在于高于 3GeV 的能量上。第 5 章是 3GeV 净质子数分布高阶矩分析的总结和展

望。在这篇论文中我们完成了固定靶实验碰撞能量为 3GeV 金金碰撞的净质子高阶矩测量，主要

结论见前述。RHIC 能量扫描第二阶段的数据采集已经结束，其碰撞能量为 3–19.6GeV，统计量是

第一阶段能量扫描所采集的数据量的 10 倍以上。这意味着我们可以在低能高重子密度区域对守恒

荷的高阶涨落进行高精度的测量，甚至可能到高阶矩的八至十阶。守恒荷的高阶涨落分析对于寻找

QCD 临界点，研究 QCD 相图结构有重要意义。

关键词：相对论重离子碰撞；量子色动力学；临界点；逐事件涨落；守恒量高阶矩。
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Abstract

Experimental evidences at RHIC and LHC have demonstrated the formation of Quark-Gluon Plasma
(QGP) in ultra-relativistic heavy-ion collisions at small baryon chemical potential (𝜇𝐵 ≈ 0 MeV) where
the phase transition from the hadronic matter to QGP is suggested to be a crossover from state-of-the-art
Lattice QCD calculations. It has been conjectured that there is a first-order phase transition and a critical
point at finite 𝜇𝐵 region in the QCD phase diagram. In the search of the possible QCD critical point, higher-
order cumulants of conserved quantities such as net-baryon number, net-strangeness number and net-charge
number are sensitive observables to locate its position. Experimentally net-proton and net-kaon number
are used proxy for net-baryon and net-strangeness number due to the difficulty to detect neutral particles in
experiment. Recent results from the STAR experiment on net-proton higher-order cumulants have shown
intriguing non-monotonic energy dependencewith 3.1 𝜎 significance in themost central Au+Au collisions at
√𝑠NN = 7.7 - 200GeV while there are still large statistical uncertainties for lower energy √𝑠NN < 20GeV.
More experimental data are needed to shrink the statistical uncertainty and confirm the trend.

In this year 2018, STAR collected around 250 million events with fixed-target experiment in Au+Au
collision at √𝑠NN = 3GeV. 3GeV is the lowest energy point from the STAR fixed-target experiment. The
net-proton fluctuation measurements at this energy will enable us to discover QCD phase digram in a wide
baryon chemical potential range. In this thesis, I will summarize the systematic analysis of event-by-event
fluctuation of proton multiplicity distribution in 3GeV Au+Au collisions. The relevant analysis details and
correction methods will also be discussed. In order to understand the collision dynamics in the absence of
the critical behavior, we have carried out simulations with transport model such as UrQMD for collisions at
3GeV. Connections between experimental data and physics implication in the high baryon density region
will be discussed.

The thesis is organized as follows. Chapter 1 is an introduction to the motivation, experimental observ-
ables. Chapter 2 shows experiment setup and a brief introduction to STR detectors. Chapter 3 discusses the
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dataset and data selection criteria as well as analysis techniques like detector efficiency correction, pileup
effect correction and volume fluctuation correction. Chapter 4 shows final results. The main conclusions
are shown below. 1) Due to the weak correlation between reference multiplicity and initial number of par-
ticipants, large volume fluctuation effect was seen. It appears from UrQMD and Glauber that most central
collisions are least affected. 2) The consistency between data and results of both UrQMD and hydrody-
namic model of 𝐶4/𝐶2 in the most central collisions, signal the effects of baryon number conservation and
an energy regime dominated by hadronic interactions. 3) The QCD critical point, if discovered in heavy-ion
collisions, could only exist at energies higher than 3GeV. Chapter 5 shows the summary and outlook. We
report a systematic study of cumulants and correlation functions of proton multiplicity distributions up to
6th-order from STAR fixed-target experiment √𝑠NN = 3GeV Au+Au collisions. The outlook is shown be-
low. The BES-II program of RHIC has finished in 2021 and collected 10 times larger statistics than BES-I in
Au+Au collisions at √𝑠NN = 3 – 19.6GeV. The high statistics data will allow one to perform high precision
measurements of higher-order cumulants even up to 8th order and to explore the QCD phase diagram at high
baryon density which is the most important region for the search of the QCD critical point.

Keywords: Relativistic heavy ion collision; QCD phase transition; QCD critical point; Fluctuation;
Higher-order cumulant.
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Chapter 1

Introduction

1.1 Standard Model

Figure 1.1.1: The standard model of elementary particles.

The Standard model of elementary particles is the theory which describes the forces of strong, weak
and electromagnetic and how the corresponding carrier particles interact with each other. Figure 1.1.1 [1]

1
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shows the standard model of elementary particles. There are 12 fermions with spin 1
2 , 4 gauge bosons with

spin 1 and Higgs boson with spin 0. According to the standard model, there are 3 generations (purple color
in figure) of quarks, up and down quarks as the first generation, charm and strange quarks as the second
generation and top and bottom quarks as the third generation. Considering each quark has its anti-particle
and has 3 colors, there are in total 36 quarks. Baryon consists of 3 quarks while mesons consist of one quark
and one anti-quark. Baryon and meson are both called hadron. Hadrons can participate in both strong and
weak interactions.

There are also 3 generations of leptons (electron and electron neutrino as the first generation, muon and
muon neutrino as the second generation and tau and tau neutrino as the third generation) which are shown
with green color. Leptons can participate in all weak interactions and electro-magnetic interactions. The 4
particles shown with red color are gauge bosons which carry the fundamental interactions. The gluon has 8
species and carries strong interaction. The photon carries electromagnetic interaction and 𝑊 ± and 𝑍 carry
weak interactions. The higgs boson in yellow color is the source of mass of all elemental particles.

The standard model successfully incorporates strong, weak and electromagnetic forces and predict the
existence of up, down quarks and 𝑊 ± and 𝑍 bosons. But the standard model is not complete and there are
still many unanswered questions. For example, the commonly known force gravity is not included in the
standard model. The standard model may need to be expanded or revised.

1.2 Quantum Chromodynamics
The quantum chromodynamics (QCD) is the theory that describes the strong interaction. As is known

quarks and gluons are color confined and form hadrons. Color confinement and asymptotic freedom are two
key characteristics of the QCD. Asymptotic freedom means that when two color charges are more close,
strong interactions between the two particles are weaker and vice versa.

The strong interaction coupling constant is defined as

𝛼𝑠(𝑄2) = 𝑔2
𝑠 (𝑄)
4𝜋 ≈ 1

𝛽0 ln(𝑄Λ2)
, (1.2.1)

where 𝛽0 is written as

𝛽0 =
33 − 2𝑁𝑓

12𝜋 , (1.2.2)

Λ is the QCD scale parameter, 𝑁𝑓 is number of quarks flavors and 𝑄 is momentum transfer.
Figure 1.2.1 [2] shows the experimental measurements of coupling constant (𝛼𝑠) of strong interactions

as a function of the respective energy scale 𝑄. It can be seen that with the increase of energy scale 𝑄,

2
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Figure 1.2.1: The running strong coupling constant 𝛼𝑠 as a function of momentum transfer 𝑄.

the coupling constant 𝛼𝑠 decreases. If the distance between quarks is small or the momentum transfer is
large then 𝛼𝑠 becomes small which means the interaction strength between quarks becomes weaker. This is
called asymptotic freedom. While if the distance between quarks is large or 𝑄𝑠 is small, then 𝛼𝑠 becomes
larger which means the interaction between quarks becomes strong, and quarks are confined within hadrons
which are colorless. This is called color confinement. Thus in nature, no free quarks or gluons are directly
observed.

1.3 QCD Phase Diagram and Critical Point

As is known from previous section quarks and gluons are color-confined. Then it can be imagined
that quarks and gluons can be released under extremely high temperature and energy density. The color-
deconfined phase with quark and gluon freedom is created which is usually called quark-gluon-plasma
(QGP) which has been proved by experimental results from RHIC in collisions energies where 𝜇B ap-
proaches zero and the Large Hadron Collider (LHC) [3, 4, 5, 6]. A QCD phase diagram in terms of tem-
perature and baryon chemical potential is used to display the hadronic phase and QGP phase. Fig. 1.3.1
shows a QCD phase diagram but its structure is less understood so far. In this region where 𝜇B ∼ 0, lattice

3
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Figure 1.3.1: The QCD phase diagram in terms of temperature and baryon chemical potential. The red line
indicates a freeze-out line while the black line indicates the QCD phase transition boundary. The black open
square is the conjectured QCD critical point.

QCD (LQCD) predicts a smooth crossover from a hadronic state to a QGP phase [7, 8, 9] and QGP matter
has been found to hadronize at temperatures close to the transition temperature at 𝜇B = 0 MeV estimated
by lattice QCD [10, 11]. At finite baryon chemical potential, due to the sign problem it is hard to perform
calculation in lattice QCD. Various models predicted a 1st order phase transition [12, 13, 14]. If it is true,
there should be an end point of the 1st order phase boundary [15, 16]. This end point is usually called QCD
critical point. Provided that there is sufficient time for the system to develop to the size under study, the
signal of the critical point could be measured in experiment [17, 18, 19, 20, 21, 22, 23]. The higher-order
event-by-event fluctuations of conserved quantities like net-baryon number (B), net-electric charge number
and net-strangeness number are sensitive observables to the system correlation length and may serve as in-
dicators of critical behaviors [23, 24, 25, 26, 27, 28]. The critical signature of higher-order cumulants will
be discussed in Sec. 1.7. This is one of the major goals of the beam energy scan program at the relativistic
heavy-ion collider (RHIC) which is conducted at different collision energies (√𝑠NN) so as to scan the QCD
phase diagram to search for the possible QCD critical point [29, 30].
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Figure 1.4.1: History of the universe.

Figure 1.4.2: The evolution of heavy ion collision experiment.
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1.4 Relativistic Heavy Ion Collision

In the low temperature and energy density world that human being live in, quarks and gluons are con-
fined within hadrons. As mentioned in previous section QGP could exist under extremely high temperature
or energy density, for example, a few millionths of second after the Big Bang, as shown in Fig. 1.4.1 [31].
People have to rely on heavy-ion collision experiments to create such condition. The relativistic heavy ion
collider located in Brookhaven National Laboratory started the beam energy scan (BES) program phase I
since the year 2010. Recently the BES phase II has just finished data-taking. The collision energy (√𝑠NN)
covers a wide range from 3 to 200 GeV.

Now let me briefly introduce different stages of heavy ion experiments. Experimentally heavy ions
like gold or lead nuclei are accelerated to near the speed of light and collide with each other. The collision
processes are described by several stages like pre-equilibrium, local thermal equilibrium and hadronization
which are shown in Fig. 1.4.2.

Because of Lorentz contraction the two nuclei move like pancakes, then collide with each other, deposit
energy. Nucleons are then released from ions and experience a pre-equilibrium stage then reaches the local
thermal equilibrium. At this stage the energy density reaches a maximum and degree of freedom of quarks
and gluons are released. The QGP is formed. The created hot and condensed matter expands due to a high
pressure and cools down. When the temperature reaches the critical temperature quarks and gluons are
confined within nucleons again and hadrons begin to form. There are two stages defined by people during
hadronization. One is chemical freeze-out when the species of hadrons are finialized or we say there are no
inelastic collisions. The other is kinematic freeze-out when elastic collisions cease. The formed hadrons are
then measured by detectors.

1.5 Fluctuation

A system for grand canonical ensemble can be characterized by its dimensionless pressure which is the
logarithm of the QCD partition function [32],

𝑃
𝑇 4 = 1

𝑉 𝑇 3 ln[𝑍(𝑉 , 𝑇 , 𝜇𝐵 , 𝜇𝑄, 𝜇𝑆 )], (1.5.1)

where V, T, 𝜇𝐵 , 𝜇𝑄 and 𝜇𝑆 are volume of the system, temperature and chemical potential for conserved
quantities of net-baryon number, net-charge number and net-strangeness number. Taking derivatives for
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each kind of chemical potential gives cumulants of each conserved quantity,

𝜒𝐵,𝑄,𝑆
𝑖,𝑗,𝑘 = 𝜕𝑖+𝑗+𝑘[𝑝/𝑇 4]

𝜕 ̂𝜇𝑖
𝐵𝜕 ̂𝜇𝑗

𝑄𝜕 ̂𝜇𝑘
𝑆

, (1.5.2)

where 𝜒𝐵,𝑄,𝑆
𝑖,𝑗,𝑘 is defined as susceptibility. Then cumulants of the conserved quantities are given by

𝐶𝐵,𝑄,𝑆
𝑖,𝑗,𝑘 ==

𝜕𝑖+𝑗+𝑘[𝑍(𝑉 , 𝑇 , 𝜇𝐵 , 𝜇𝑄, 𝜇𝑆 )]
𝜕 ̂𝜇𝑖

𝐵𝜕 ̂𝜇𝑗
𝑄𝜕 ̂𝜇𝑘

𝑆
= 𝑉 𝑇 3𝜒𝐵,𝑄,𝑆

𝑖,𝑗,𝑘 (𝑇 , 𝜇𝐵 , 𝜇𝑄, 𝜇𝑆 ) (1.5.3)

which are readily compared with susceptibilities [9, 24, 32, 33, 34, 35, 36, 37, 38, 39]. As the hot dense mat-
ter created in heavy ion collisions expands during its evolution, its volume keeps changing. Experimentally
the cumulant ratios are constructed to cancel volume dependence.

1.5.1 Cumulant

I will show the definition of cumulant in this section.
Let us consider a probability distribution 𝑃 (𝑁) in which 𝑁 is number of measured particle. The 𝑟th-

order raw moment (𝜇′
𝑟 ) and central moment (𝜇𝑟) are then defined by

𝜇′
𝑟 = ∑

𝑁
𝑁𝑟𝑃 (𝑁) (1.5.4)

and
𝜇𝑟 = ∑

𝑁
(𝑁 − ⟨𝑁⟩)𝑟𝑃 (𝑁) (1.5.5)

where the bracket ⟨.⟩ indicates average. It is convenient to introduce a moment generating function,

𝐺(𝜃) = ∑
𝑁

𝑒𝑁𝜃𝑃 (𝑁) = ⟨𝑒𝑁𝜃⟩, (1.5.6)

Then the 𝑟th-order raw moment can be expressed as 𝑟th-order derivative of 𝐺(𝜃)

𝜇′
𝑟 = 𝑑𝑟

𝑑𝜃𝑟 𝐺(𝜃)|𝜃=0
, (1.5.7)

Since moments drastically increase with increasing the order 𝑟, cumulants are easier to handle rather
than moments. A cumulant generating function is defined as

𝐾(𝜃) = ln𝐺(𝜃), (1.5.8)
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The 𝑟th-order cumulant is then given by taking derivatives of 𝐾(𝜃):

𝐶𝑟 = 𝑑𝑟

𝑑𝜃𝑟 𝐾(𝜃)|𝜃=0
, (1.5.9)

Cumulants can be expressed by raw moments and central moments recursively shown in Eqs. 1.5.11
and 1.5.10.

𝐶𝑛(𝑛 ≥ 1) = 𝜇′
𝑛 −

𝑛−1

∑
𝑚=1 (

𝑛 − 1
𝑚 )𝜇′

𝑚𝐶𝑛−𝑚, (1.5.10)

𝐶𝑛(𝑛 ≥ 2) = 𝜇𝑛 −
𝑛−2

∑
𝑚=1 (

𝑛 − 1
𝑚 )𝜇𝑚𝐶𝑛−𝑚. (1.5.11)

Cumulants up to 6th-order in terms of central moments are shown below.

𝐶1 = ⟨𝑁⟩ ,
𝐶2 = ⟨(𝛿𝑁)2⟩ = 𝜇2,
𝐶3 = ⟨(𝛿𝑁)3⟩ = 𝜇3,

𝐶4 = ⟨(𝛿𝑁)4⟩ − 3 ⟨(𝛿𝑁)2⟩
2 = 𝜇4 − 3𝜇2

2 ,
𝐶5 = ⟨(𝛿𝑁)5⟩ − 10 ⟨(𝛿𝑁)2⟩ ⟨(𝛿𝑁)3⟩ = 𝜇5 − 10𝜇2𝜇3,

𝐶6 = ⟨(𝛿𝑁)6⟩ + 30 ⟨(𝛿𝑁)2⟩
3 − 15 ⟨(𝛿𝑁)2⟩ ⟨(𝛿𝑁)4⟩ − 10 ⟨(𝛿𝑁)3⟩

2

= 𝜇6 + 30𝜇3
2 − 15𝜇2𝜇4 − 10𝜇2

3

(1.5.12)

where 𝛿𝑁 = 𝑁 − ⟨𝑁⟩.
The cumulants are related to the various moments as

𝑀 = 𝐶1, 𝜎2 =𝐶2, 𝑆 = 𝐶3
(𝐶2)3/2 , 𝜅 = 𝐶4

𝐶2
2

. (1.5.13)

The products of moments can be expressed in terms of the cumulant ratios as

𝜎2/𝑀 = 𝐶2
𝐶1

, 𝑆𝜎 = 𝐶3
𝐶2

, 𝜅𝜎2 = 𝐶4
𝐶2

. (1.5.14)

As is shown in Fig. 1.5.1, positive, negative and zero skewness and kurtosis can be seen in different colors.

1.5.2 Factorial Cumulant

Factorial moment generating function 𝐻(𝑡) is the mean value of 𝑡𝑁 .

𝐻(𝑡) = ∑
𝑁

𝑡𝑁 𝑃 (𝑁), (1.5.15)
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Figure 1.5.1: A sketch of negative, positive and zero skewness (S) and kurtosis (𝜅).

Then 𝑛th order factorial moment (𝐹𝑛) is obtained by taking 𝑛th derivatives of 𝐻(𝑡).

𝐹𝑛 = 𝑑𝑛

𝑑𝑡𝑛 𝐻(𝑡)|𝑡=1, (1.5.16)

Factorial moments up to 6th-order are shown below in terms of raw moments.

𝐹1 = 𝜇′
1,

𝐹2 = 𝜇′2 − 𝜇′ ,
𝐹3 = 𝜇′3 − 3𝜇′2 + 2𝜇′ ,
𝐹4 = 𝜇′4 − 6𝜇′3 + 11𝜇′2 − 6𝜇′ ,
𝐹5 = 𝜇′5 − 10𝜇′4 + 35𝜇′3 − 50𝜇′2 + 24𝜇′ ,
𝐹6 = 𝜇′6 − 15𝜇′5 + 85𝜇′4 − 225𝜇′3 + 274𝜇′2 − 120𝜇′ .

(1.5.17)

It is seen that factorial moments are connected to raw moments by a recursion equation 𝐹𝑛 = ⟨𝑁(𝑁 −
1)(𝑁 − 2) ⋯ (𝑁 − 𝑛 + 1) = ⟨ 𝑁!

(𝑁−𝑛)! ⟩. Similarly ln𝐻(𝑡) is defined as the generating function of factorial
cumulant which is also called integrated correlation function (for simplicity correlation function is used
instead). Taking derivatives of ln𝐻(𝑡) gives 𝑛th order factorial cumulant (𝜅𝑛).

𝜅𝑛 = 𝑑𝑛

𝑑𝑡𝑛 ln𝐻(𝑡)|𝑡=1, (1.5.18)

Factorial cumulants expressions can be displayed in terms of cumulants and vice versa. The expressions are
shown below in 1.5.19 and 1.5.20.
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𝜅1 = 𝐶1,
𝜅2 = −𝐶1 + 𝐶2,
𝜅3 = 2𝐶1 − 3𝐶2 + 𝐶3,
𝜅4 = −6𝐶1 + 11𝐶2 − 6𝐶3 + 𝐶4,
𝜅5 = 24𝐶1 − 50𝐶2 + 35𝐶3 − 10𝐶4 + 𝐶5,
𝜅6 = −120𝐶1 + 274𝐶2 − 225𝐶3 + 85𝐶4 − 15𝐶5 + 𝐶6.

(1.5.19)

𝐶1 = 𝜅1,
𝐶2 = 𝜅1 + 𝜅2,
𝐶3 = 𝜅1 + 3𝜅2 + 𝜅3,
𝐶4 = 𝜅1 + 7𝜅2 + 6𝜅3 + 𝜅4,
𝐶5 = 𝜅1 + 15𝜅2 + 25𝜅3 + 10𝜅4 + 𝜅5,
𝐶6 = 𝜅1 + 31𝜅2 + 90𝜅3 + 65𝜅4 + 15𝜅5 + 𝜅6.

(1.5.20)

Various useful correlation function ratios can be displayed in terms of cumulant ratios shown below.

𝜅2
𝜅1

= 𝐶2
𝐶1

− 1,

𝜅3
𝜅1

= (𝐶3
𝐶1

− 1) − 3(𝐶2
𝐶1

− 1),

𝜅4
𝜅1

= (𝐶4
𝐶1

− 1) − 6(𝐶3
𝐶1

− 1) + 11(𝐶2
𝐶1

− 1),

𝜅5
𝜅1

= (𝐶5
𝐶1

− 1) − 10(𝐶4
𝐶1

− 1) + 35(𝐶3
𝐶1

− 1) − 50(𝐶2
𝐶1

− 1),

𝜅6
𝜅1

= (𝐶6
𝐶1

− 1) − 15(𝐶5
𝐶1

− 1) + 85(𝐶4
𝐶1

− 1) − 225(𝐶3
𝐶1

− 1)

+ 274(𝐶2
𝐶1

− 1).

(1.5.21)
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𝐶2
𝐶1

= 𝜅2
𝜅1

+ 1,

𝐶3
𝐶2

= 𝜅3/𝜅1 − 2
𝜅2/𝜅1 + 1 + 3,

𝐶4
𝐶2

= 𝜅4/𝜅1 + 6𝜅3/𝜅1 − 6
𝜅2/𝜅1 + 1 + 7,

𝐶5
𝐶1

= 𝜅5
𝜅1

+ 10𝜅4
𝜅1

+ 25𝜅3
𝜅1

+ 15𝜅2
𝜅1

+ 1,

𝐶6
𝐶2

= 𝜅6/𝜅1 + 15𝜅5/𝜅1 + 65𝜅4/𝜅1 + 90𝜅3/𝜅1 − 30
𝜅2/𝜅1 + 1 + 31.

(1.5.22)

Reduced cumulant ratios (𝐶𝑛
𝐶1

− 1) are shown in Eq. 1.5.23.

𝐶2
𝐶1

− 1 = 𝜅2
𝜅1

,

𝐶3
𝐶1

− 1 = 3𝜅2
𝜅1

+ 𝜅3
𝜅1

,

𝐶4
𝐶1

− 1 = 7𝜅2
𝜅1

+ 6𝜅3
𝜅1

+ 𝜅4
𝜅1

,

𝐶5
𝐶1

− 1 = 15𝜅2
𝜅1

+ 25𝜅3
𝜅1

+ 10𝜅4
𝜅1

+ 𝜅5
𝜅1

,

𝐶6
𝐶1

− 1 = 31𝜅2
𝜅1

+ 90𝜅3
𝜅1

+ 65𝜅4
𝜅1

+ 15𝜅5
𝜅1

+ 𝜅6
𝜅1

.

(1.5.23)

1.6 Useful Statistical Distributions

1.6.1 Binomial Distribution

Bernoulli experiment describes a random experiment that is independently repeated. There will be two
outcomes for each trial: failure or success. If enough number of times are repeated one can obtain some
useful information from the experiment.

Binomial distribution describes number of successful or failed Bernoulli experiments where experi-
ments share identical possibility to succeed/fail. The probability distribution of Binomial distribution of
random variable 𝑁 is given by

𝑃 (𝑁 = 𝑘) = (
𝑁
𝑘 )𝑝𝑘(1 − 𝑝)𝑁−𝑘 (1.6.1)

11



博士学位论文

DOCTORAL DISSERTATION
CHAPTER 1. INTRODUCTION

where 𝑘 is number of successful/failed trials and 𝑝 is probability for each trial to succeed/fail.
Binomial distribution is useful in experiment related to detector efficiency. As will be discussed in

Sec. 3.3 the detector efficiency correction method is based on Binomial responded detector efficiency.

1.6.2 Poisson Distribution

Poisson distribution is a famous discrete probability distribution in the theory of statistics. Its proba-
bility distribution (𝑃 (𝑁 = 𝑘)) is given by

𝑃 (𝑁 = 𝑘) = 𝜆𝑘

𝑘! 𝑒−𝜆, 𝑘 = 0, 1, ⋯ (1.6.2)

where 𝜆 is the average of number of events that occur. It is used to describe number of events that randomly
occur per unit time. As there is no correlation between each event thus Poisson distribution is commonly
used as a baseline to compare with experiment data.

The moment generating function of Poisson distribution is

𝑀(𝑡) =
∞

∑
𝑘=0

𝑒𝑘𝑡𝑒−𝜆 𝜆𝑘

𝑘! = 𝑒−𝜆
∞

∑
𝑘=0

(𝜆𝑒𝑡)𝑘

𝑘! 𝑒𝜆(𝑒𝑡−1), (1.6.3)

then cumulant generating function is shown as

𝐾(𝑡) = ln𝑀(𝑡) = 𝜆(𝑒𝑡 − 1), (1.6.4)

. Taking derivatives of 𝐾(𝑡) gives cumulants of each order which are shown as

𝐶𝑛 = 𝜆 𝑑𝑛

𝑑𝑡𝑛 (𝑒𝑡 − 1)|𝑡=0 = 𝜆𝑒𝑡|𝑡=0 = 𝜆. (1.6.5)

and it is seen that cumulant ratios are equal to unity.

1.6.3 Gaussian Distribution

Gaussian distribution is an important distribution in the theory of statistics. Its probability distribution
𝑃 (𝑁) for a random variable 𝑁 is described by

𝑃 (𝑁) = 1
√2𝜋𝜎

𝑒− (𝑁−𝜇)2
2𝜎2 , (1.6.6)
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where 𝜇 and 𝜎 are the mean value and standard deviation of 𝑁 , respectively. Similarly the moment gener-
ating function 𝑀(𝑡) and cumulant generating function 𝐾(𝑡) are expressed as

𝑀(𝑡) = 𝐸𝑒𝑡𝑁 = ∫
∞

−∞
𝑒𝑡𝑁 1

√2𝜋𝜎
𝑒− (𝑁−𝜇)2

𝑠𝜎2 𝑑𝑁, (1.6.7)

and
𝐾(𝑡) = ln𝑀(𝑡) = 𝜇𝑡 + 1

2𝜎2𝑡2. (1.6.8)

Taking derivatives of 𝐾(𝑡) goves cumulants of each order which are shown below

𝐶1 = 𝜇, 𝐶2 = 𝜎2, 𝐶𝑛(𝑛 ≥ 3) = 0. (1.6.9)

From Eq. 1.6.9 one can see that higher order cumulants (𝑛 ≥ 3) equal zero that means the cumulant ratios
like 𝑆𝜎 and 𝜅𝜎2 are measure of non-Gaussian fluctuation.

1.7 Signature of the QCD Critical Point

Figure 1.7.1: Left panel: the QCD phase diagram in terms of temperature 𝑇 and baryon chemical potential
𝜇B with conjectured QCD critical point (red circle) and 1th-order phase transition line (blue line). The green
dash line indicates chemical freeze-out. Right panel: 4th cumulant ratio 𝐶4/𝐶2 (𝜅𝜎2) as a function a collision
energy (√𝑠). The dash line indicates the Poisson baseline.

Higher order cumulants of conserved quantities like net-baryon (𝐵) number, net-charge (𝑄) number
and net-strangeness (𝑆) number are proposed as promising observables to search for QCD critical point as
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well as the 1st-order phase transition boundary [20, 24, 40, 41, 42]. It is known at the critical point the
correlation length 𝜉 of the system will diverge, and cumulants of conserved quantities (𝐵, 𝑄, 𝑆) are proved
to be sensitive to 𝜉. Theoretical calculations of sensitivity of cumulants on critical point are briefly shown
below.

The calculations [25, 26, 27] are based on the probability distribution of an order parameter field that
will develop finite correlation length at the critical point. The probability distribution 𝑃 (𝜎) is expresses
as 𝑃 (𝜎) ∼ 𝑒−Ω(𝜎)/𝑇 where Ω is the free energy of the field 𝜎. Ω can be expanded in powers of 𝜎 and the
gradients,

Ω(𝜎) = ∫ 𝑑3𝑥[1
2(𝜎)2 + 𝑚2

𝜎
2 𝜎2 + 𝜆3

3 𝜎3 + 𝜆4
4 𝜎4 + ⋯], (1.7.1)

where 𝑚𝜎 = 1/𝜉 is the 𝜎 field screening mass, 𝜆3 and 𝜆4 are interaction couplings. Let 𝑉 be the volume of
the system. The moments of the zero momentum mode is 𝜎𝑉 ≡ ∫ 𝑑3𝜎(𝑥), and cumulants of the 𝜎 field are

𝐶2 = ⟨𝜎2
𝑉 ⟩ = 𝑉 𝑇 𝜉2,

𝐶3 = ⟨𝜎3
𝑉 ⟩ = 2𝜆3𝑉 𝑇 𝜉6,

𝐶4 = ⟨𝜎4
𝑉 ⟩ − 3⟨𝜎2

𝑉 ⟩2 = 6𝑉 𝑇 3[2(𝜆3𝜉)2 − 𝜆4]𝜉8.

(1.7.2)

At the critical point, the correlation length 𝜉 → ∞, the couplings 𝜆3 and 𝜆4 scale with 𝜉,

𝜆3 = ̃𝜆3𝑇 (𝑇 𝜉)−3/2,
𝜆4 = ̃𝜆4𝑇 𝜉−1.

(1.7.3)

where ̃𝜆3 and ̃𝜆4 are dimensionless couplings and do not depend on 𝜉. According to the direction of approach
to the critical point (crossover or 1th-order phase transition), the ̃𝜆3 and ̃𝜆4 vary from 0 to ∼8 and from ∼4
to ∼20, respectively. Taking Eq. 1.7.3 to Eq. 1.7.2, we have

𝐶3 = 2 ̃𝜆3𝑉 𝑇 3/2𝜉4.5,
𝐶4 = 6𝑉 𝑇 2(2 ̃𝜆3 − ̃𝜆4)𝜉7.

(1.7.4)

Fig. 1.7.1 (left panel) shows the QCD phase diagram in terms of temperature and baryon chemical
potential. The contributions from QCD critical point to the 4th-order cumulant ratio 𝐶4/𝐶2 (𝜅𝜎2) calculated
from 𝜎 model [25, 26, 27] are drawn with red (negative contribution) and blue (positive contribution) shaded
area. Due to the contributions from QCD critical point, 𝜅𝜎2 shows a non-monotonic energy dependence
which is a signature of the critical point. However, in heavy ion collisions, effects like finite size, limited
lifetime of the hot nuclear system, thermal blurring, diffusion as well as resonance decay effects may put
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constraints on the significance of signals [43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. When studying the higher-
order cumulant ratios, it is essential to demonstrate that in the absence of critical behavior, the ratios are
consistent with the expectations from the non-critical baseline. The expectation for the 𝐶4/𝐶2 ratio under
Poisson statistics is unity, though the measured net-proton 𝐶4/𝐶2 within the experimental kinematic accep-
tance is expected to show a reduction due to the baryon number conservation [53, 54]. This reduction is
expected to increase with decreasing collision energy [55]. Previously, the HADES Collaboration reported
their measurement of the proton cumulant ratio of 𝐶4/𝐶2 in central Au+Au collisions at √𝑠NN = 2.4GeV
consistent with unity within large uncertainties. More precise data at the low collision energy is needed to
quantitatively interpret the collision energy dependence of the (net-)proton fluctuation.

1.8 Thesis Motivation
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Figure 1.8.1: Collision energy dependence of cumulant ratios 𝑆𝜎 and 𝜅𝜎2 of net-proton multiplicity dis-
tributions in Au+Au collisions of RHIC beam energy scan I energies within acceptance |𝑦| < 0.5 and
0.4 < 𝑝T < 2.0 GeV/𝑐.

The thesis is motivated by the critical signature shown in Sec. 1.7 to measure the net-proton cumulants
from the dedicated fixed-target experiment of the STAR at √𝑠NN = 3GeVwhich is the lowest and important
energy point of the RHIC beam energy scan program at high baryon density region.

At small 𝜇B lattice QCD calculations have predicted positive cumulant ratio of 𝐶4/𝐶2 and negative
ratios of 𝐶5/𝐶1 and 𝐶6/𝐶2 for the formation of QGP matter. The results suggest that a critical point below
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Figure 1.8.2: Lattice QCD calculations of net-baryon cumulant ratios of 𝐶5/𝐶1 (green shaded area) and
𝐶6/𝐶2 (pink shaded area) at √𝑠NN = 39 – 200GeV. The pink squares are cumulant ratio 𝐶6/𝐶2 from STAR
preliminary results in Au+Au collisions at √𝑠NN = 54.4 and 200GeV for the 0-40% centrality class.

Figure 1.8.3: Theoretical calculations using the functional renormalisation group (fRG) approach of baryon
number fluctuations 𝐶5/𝐶1 and 𝐶6/𝐶2 as functions of the collision energy.
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𝜇B < 200Mev is unlikely to exist [56]. As is shown in Sec. 1.7 the non-monotonic energy dependence of
𝜅𝜎2 is a signature of the QCD critical point. Figure 1.8.1 shows energy dependence of cumulant ratios 𝑆𝜎
and 𝜅𝜎2 of net-proton multiplicity distributions in Au+Au collisions at √𝑠NN = 7.7-200GeV [57]. The
𝑆𝜎 (left panel) shows a decreasing trend with the increase of collision energy both in central and peripheral
collisions. The decreasing trend can be qualitatively described by HRG [47] and UrQMD [58, 59] models.
The 𝜅𝜎2 (right panel in Fig. 1.8.1) shows a non-monotonic energy dependence in central collisions while the
results for peripheral collisions show monotonic energy dependence. The non-monotonic trend in central
collisions can not be described by different conditions (GCE, EV, and CE) of HRG and UrQMD models.
These results from BES-I inspired a BES-II program which focuses on the collision energy region between
3 – 20GeV (𝜇B = 200 – 750MeV). BES-II combines both collider and fixed-target configurations of the
STAR experiment in order to investigate the nature of the phase transition [60].

It was also pointed out that the experimental measured multiplicity distributions suffer sizable contri-
butions from fluctuating collision volume. This effect, often called volume fluctuation (VF), is expected
to be larger at low collision energies and/or low multiplicity events. As is shown in the study [61] using
hadronic transport model in √sNN = 3 GeV Au+Au collisions that at low energies, the centrality resolu-
tion for determining the collision centrality using charged particle multiplicities is not sufficient to reduce
the initial volume fluctuation effect for higher-order cumulant analysis. Therefore, to better understand the
effect of VF, it is important to systematically perform measurements within various kinematic windows and
different collision centralities.

Recently first principle lattice QCD calculations shown in Fig. 1.8.2 on the baryon number suscepti-
bilities ratios 𝜒B

6 /𝜒B
2 and 𝜒B

6 /𝜒B
2 cover a wide range of collision energy (√𝑠NN) from 39 to 200GeV [62].

Negative signs of 𝜒B
6 /𝜒B

2 and 𝜒B
6 /𝜒B

2 are predicted due the crossover transition of between QGP and hadron
phase. The calculation using the functional renormalisation group (FRG) approach shown in Fig. 1.8.3 also
gives negative 𝜒B

6 /𝜒B
2 and 𝜒B

6 /𝜒B
2 over a wide range of 𝜇B 20 - 420MeV corresponding to central Au+Au

collisions at √𝑠NN = 200 and 7.7GeV, respectively [63]. While this is contrast to the calculations from
hadronic transport model UrQMD and HRG model which 𝐶5/𝐶1 and 𝐶6/𝐶2 remain positive. As there is
no phase transition physics is implemented in the UrQMD and HRG models, the calculations would be
baselines for the case without critical physics.

It is pointed in Ref. [64] that acceptance dependence of cumulants and correlation functions are also
important to study QCD phase transition. It is pointed out that there may be two qualitatively different
regimes: Δ𝑦 ≫ Δ𝑦corr and Δ𝑦 ≪ Δ𝑦corr, where Δ𝑦 is the width of the kinematic acceptance in rapidity
and Δ𝑦corr is the range of the proton correlations in rapidity. When Δ𝑦 ≪ Δ𝑦corr, one expects the cumulant
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ratios to approach the Poisson limit at Δ𝑦 ∼ ⟨𝑁⟩ → 0. Alternatively, one expects the correlation functions to
become rapidity independent as Δ𝑦 becomes wider. In the Δ𝑦 ≫ Δ𝑦corr regime as Δ𝑦 increases, cumulants
are expected to grow linearly from the uncorrelated contributions while the cumulant ratios are expected
saturate from any physical correlations. Therefore, the rapidity and transverse momentum dependence of
proton cumulants and correlation functions are important to search for signatures of criticality. It should be
noted, the acceptance dependence could be sensitive to non-equilibrium effects [65, 66], smearing due to
diffusion and hadronic rescattering in the expansion of the system [67].
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Chapter 2

Experiment Setup

2.1 Relativistic Heavy Ion Collider

Figure 2.1.1: The relativistic heavy ion collider located in Brookhaven national laboratory of the US.

The relativistic heavy ion collider (RHIC) shown in Fig. 2.1.1 [68] is located in Brookhaven national
laboratory 1 in which the STAR experiment 2 is one of the premier particle detectors in the world. In RHIC
two beams of gold ions are accelerated at nearly the speed of light in oppotite directions and travel around

1https://www.bnl.gov
2https://www.star.bnl.gov
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RHIC 2.4-mile ring, and finally collide with each other to create a very high temperature and energy density
region which is supposed to melt proton and neutrons and to free quarks and gluons for a short time.

2.2 STAR Detector System

Figure 2.2.1: The STAR detector system.

The STAR experiment at RHIC is to study the formation and properties of quark gluon plasma which
is believed to exist at very high energy density generated by heavy ion collisions. Because of the complexity
of the system produced in collisions the STAR detector system consists of several types of detectors which
are functioning to measure different types of particles. With these detectors working together experiment
data of heavy ion collisions is collected for scientific analysis.

In the following sections, as they are closely related to particle identification, the two detectors called
time projection chamber (TPC) and time of flight detector (TOF) will be mainly discussed.

2.2.1 Time Projection Chamber

The time projection chamber [69] shown in Fig. 2.2.2 is a tracking device with which trajectories,
momentum as well as ionization energy loss of particles when they travel through TPC are measured. The

20



CHAPTER 2. EXPERIMENT SETUP 博士学位论文

DOCTORAL DISSERTATION

TPC is a cylinder that is 4.2 m long and 4 m in diameter. Its acceptance covers ±1.8 pseudo-rapidity through
the full azimuthal angle. It is an empty barrel and sits in a large solenoidal magnet (|B| = 0.5 T) along the
beam pipe (z-axis) direction. The magnetic field is sued to bend the trajectories of the original particles
and also help keep the drifting electrons from dispersing as they travel. The TPC is filled with P10 gas
(10% methane, 90% argon) with a well-defined, uniform, electric field of ∼135 V/cm and has readout 12
sectors on both ends. Collisions happen near the center of the TPC. When charged particles transverse
through the TPC they ionize gas atoms and ionized gas atoms will release secondary electrons. Then those
free electrons will drift at a steady speed around 5.45 cm/𝜇𝑠 to the readout end caps at the bottom of TPC.
The energy deposited from drift electrons to the readout end caps and their drift time are measured. With
these information the ionization position (TPC hits) of charged particles are obtained and trajectories are
reconstructed. The energy loss of each ionization point is used to identify particle species.

Figure 2.2.2: The time projection chamber of the STAR detector system.

Fig. 2.2.3 shows the energy loss (dE/dx) for particles in the TPC as a function as a function of the
rigidity (p/q GeV/𝑐) of the primary particle in √𝑠NN = 39GeV Au+Au collisions. The lines on the plot are
fits from Bichsel function [70]. It is seen that protons are well separated from pions at 𝑝 < 1 GeV/𝑐.

The Bathe-Bloch Eq. 2.2.1 gives mean value of charged particle ionized energy loss

dE
dx = −𝐾 𝑍

𝐴
𝜌
𝛽2 {ln(2𝑚𝑒𝑐2𝛾2𝛽2

𝐼 ) − 𝛽2 − 𝛿
2} (2.2.1)

where 2𝜋𝑁𝑎𝑟2
𝑒𝑚𝑒𝑐2 = 0.1535 MeVcm2/g, 𝛾 = 1/√1 − (𝑣/𝑐)2. The measured energy loss (dE/dx) then can

be compared with expected value shown in Eq. (2.2.1). The experimental measured dE/dx values of tracks
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Figure 2.2.3: The energy loss distribution for primary and secondary particles in the STARTPC as a function
of the rigidity (p/q GeV/𝑐) of the primary particle in √𝑠NN = 39GeV Au+Au collisions.

is usually described by Landau distribution which has a long tail which means a direct mean will lose some
information of tracks. Thus a 70% truncated mean (typically 30% is removed before taking average) of
dE/dx is calculated. Then Bichsel function [70] is used to fit dE/dx distribution. A variable 𝑛𝜎 is calculated
by 𝑛𝜎𝑝𝑟𝑜𝑡𝑜𝑛 = 1

𝑅 log ⟨dE/dxmeasured⟩
⟨dE/dxBichsel⟩

where R is the resolution of energy loss. The 𝑛𝜎 describes number of 𝜎 that
a track is away from expected value for this particle species. The 𝑛𝜎 distribution follows Gaussian statistics
with 𝜎 = 1 and mean value is zero. Usually placing a cut on |𝑛𝜎| < 3 means dropping 0.3% of tracks that
are deviated from expected values of Bichsel model .

2.2.2 Time of Flight

To ensure high purity of proton for higher momentum (𝑝 > 1 GeV/𝑐 for data in collider mode and
𝑝 > 2 GeV/𝑐 for fixed-target mode, refer to Sec. 3.1.3) the barrel Time of Flight (TOF) detector is used. The
TOF detector is based on the Multi-gap Resistive Plate Chamber (MRPC) technology and located outside of
TPC detector. Fig. 2.2.4 shows the tray, module and pad of TOF. There are in total 120 TOF trays mounted
on the east and west sides of TPC so that TOF covers pseudo-rapidity |𝜂| ≤ 1 in full 2𝜋 azimuthal angle.
Each TOF tray has 32 MRPC modules. MRPC mainly contains two electrodes with a voltage of 7 KV and
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Figure 2.2.4: The time of flight detector of the STAR detector system.

a stack of resistive glass plates with 6 uniform gas gaps between them. Every small gas gap is filled with
high and uniform electric field. When charged particles pass through the module, there will be simultaneous
avalanches in the 6 gas gaps. Superposition of avalanches of 6 gas gaps is then measured. Given the track
length 𝐿 and total momentum 𝑝 reconstructed by TPC, the track speed 𝛽 as well as particle mass 𝑚 are then
calculated by

𝛽 = 𝐿
𝑐𝑡 ,

𝑚2 = 𝑝2( 1
𝛽 − 1)

(2.2.2)

where 𝑡 is flight time of tracks.

2.3 STAR Fixed-Target Experiment
In this section I introduce the fixed-target program in the STAR experiment. The fixed target experiment

at √𝑠NN= 3GeV in Au+Au collisions allows for a statistically significant measurement of 𝜅𝜎2 at a collision
energy between the HADES measurement [71] at √𝑠NN= 2.4 GeV and the STAR’s lowest energy point at
√𝑠NN= 7.7 GeV in collider mode.

Fig. 2.3.1 shows the schematic of fixed-target setup in the STAR experiment. The gold target was
located at 200.7 cm from the center of the TPC and of thickness 1.93 g/cm2 (0.25mm) corresponding to a
1% interaction probability. An incident beam consisting of 12 bunches of 7 × 109 gold ions, circulated in
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Figure 2.3.1: Left panel: The setup of fixed-target program of STAR experiment. Right panel: The gold
target which is a 0.25mm-thick foil.

the RHIC ring at 1MHz with an energy of 3.85GeV per nucleon, entered from the right side of the plot and
bombarded the target.
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Chapter 3

Analysis Details

3.1 Data Set

The data used in this analysis is collected from the STAR fixed-target experiment run in Au+Au colli-
sions at √𝑠NN= 3GeV in the year 2018. Around 140 million events are used in this analysis.

√𝑠NN(GeV) Trigger Setup Name Year Production Tag Library Trigger ID
3.0 production_3p85GeV_fixedTarget_2018 2018 P19ie SL20c 620052

Table 3.1: Data set of Au+Au collisions at √𝑠NN= 3GeV from fixed-target experiment.

3.1.1 Run Selection

Good runs are selected by run-by-run QA analysis shown in Fig. 3.1.1. Event level variables, like
RefMult, Vz, Vr, and RefMult3 and track level variables like 𝑝T, 𝜙, 𝜂, and DCA are used to do run-by-run
QA. The mean value of each variable per run are plotted as a function of run index. Runs that are within
mean value ± 3𝜎 are selected as good runs. Based on this selection, 72 runs are collected which is shown
in Table 3.1.
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Good Run List
19153033 19153034 19153035 19153036 19153037 19153042
19153043 19153044 19153050 19153051 19153052 19153053
19153054 19153055 19153056 19153057 19153058 19153059
19153061 19153062 19153063 19153064 19153066 19154001
19154002 19154005 19154007 19154027 19154028 19154029
19154030 19154031 19154032 19154036 19154037 19154038
19154039 19154040 19154041 19154044 19154045 19154047
19154048 19154049 19154052 19154053 19154054 19154055
19154057 19154058 19154061 19154063 19154064 19154065
19154066 19154067 19155001 19155003 19155004 19155005
19155006 19155008 19155009 19155010 19155011 19155016
19155017 19155018 19155019 19155020 19155021 19155022

Table 3.2: A list of run number selected as good runs.
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Figure 3.1.1: Run-by-run QA of event level variables, RefMult, Vz, Vr, and RefMult3, and track level
variables, 𝑝T, 𝜙, 𝜂, and DCA. The red dashed line is the mean of run average of each variable. The blue
dotted line indicates mean ± 3 times of standard deviation.
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3.1.2 Event Selection

In the STAR fixed-target experiment, the vertex in beam (Vz [cm]) and radial direction (Vx, Vy [cm])
are required to be 199.5 < Vz < 202 [cm] and 1.5 cm from the beam spot (Vr = √V2

x + (Vy + 2.)2,
|Vr| < 1.5 [cm]). The vertex distribution in radial and beam direction are shown in Fig. 3.1.2.

Figure 3.1.2: Panel (a): Vertex distribution (Vz cm) in beam direction. Panel (b): Vertex distribution (Vx
and Vy) in radial direction.

3.1.3 Track Selection

To ensure track quality, number of hit points in TPC used for reconstructing track is required to be larger
than 10 (nHitsFit > 10), a ratio number of hits points over number of maximum hits points are required to
be larger than 0.51 and a DCA (Distance of Closest Approach) cut is required to be less than 3 cm.

Proton identification is mainly done by using TPC and TOF detectors. In TPC, particle identification
is done by comparing energy loss to theoretical expectation value from Bichsel model [70]. Fig. 3.1.3
panel (a) shows TPC dE/dx vs rigidity(|p|/q, a ratio of total momentum over charge) distribution in which
the red line means the theoretical expectation from Bichsel model. Instead of using energy loss per track
length directly, a variable 𝑛𝜎𝑝 is defined as 1

𝜎𝑅
ln dE/dxmeasured

dE/dxexpectation
for convenience in which 𝜎𝑅 is momentum

dependent dE/dx resolution. A cut |𝑛𝜎𝑝|<3. is placed to drop 0.3% of trackswhich deviated from expectation
value. Fig. 3.1.4 shows |𝑛𝜎𝑝𝑟𝑜𝑡𝑜𝑛| for different total momentum slices. The proton purity is calculated
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Figure 3.1.3: Panel (a): TPC Track energy loss (dE/dx (KeV/cm)) vs. momentum; pion, kaon, deuteron
and triton are labeled. The proton Bethe-Bloch curve is plotted with red line. Panel (b): TPC 𝑛𝜎𝑝 vs. TOF
𝑚𝑎𝑠𝑠2. Panel (c): Transverse momentum (𝑝T) vs. proton rapidity.

by estimating the fraction of proton with removing contamination from other particles within +/- 3𝜎. In
Fig. 3.1.4, proton purity is above 96% when total momentum in lab frame is less than around 2 GeV/𝑐. For
high momentum region, TOF detector is used for particle identification. The track velocity is calculated
using the flight time of track from TOF and track length measured by TPC. Then track mass is calculated by
𝑚 = √𝑝 ∗ (1 − 𝛽2)/𝛽2. Tracks with a momentum above 2 GeV/𝑐 require a mass-squared cut of 0.6 < 𝑚2 <
1.2 GeV2/𝑐4. Fig. 3.1.3 panel (b) shows TPC 𝑛𝜎𝑝𝑟𝑜𝑡𝑜𝑛 vs TOF mass square distribution with a momentum
(in lab frame) cut 𝑝 > 2 GeV/𝑐 applied. A red dashed box in Fig. 3.1.3 panel (b) is drawn to show the area
for selected protons. Fig. 3.1.3 panel (c) shows transverse momentum (𝑝T) vs proton rapidity (y) in center
of mass frame. The red dashed box indicates acceptance window (0.4 < 𝑝T < 2.0 GeV/𝑐, −0.9 < 𝑦 < 0)
for the analysis.

3.2 Centrality Determination
Collision centrality is a measure of overlap of two colliding nucleus in beam direction. Experimentally

charged particle reference multiplicity named FXTMult3 is used to define centrality. In this analysis in
order to maximize centrality resolution, charged particles excluding protons (anti-protons are negligible,

̄𝑝/𝑝 ∼ exp(−2𝜇B/𝑇ch) < 10−6) are used in reference multiplicity within Full TPC acceptance −2 < 𝜂 < 0 (𝜂
is defined as 𝜂 = 0.5 ∗ ln(

𝐸+𝑝𝑧
𝐸−𝑝𝑧 ) in which 𝑝 and 𝑝z are total momentum and a fraction of total momentum

in beam direction.) in lab frame. Protons and light nuclei are excluded to reduce self-correlation effect [72].
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Figure 3.1.4: Proton 𝑛𝜎𝑝 distribution for each 𝑝T window. Track quality cuts, nHits>15, DCA<3, are ap-
plied. Positive charged particles, negative charged particles are drawn as black and pink line, respectively.
The peak around zero on x axis is for proton tracks which is fitted using Gaussian distribution while back-
ground are fitted using multi-Gaussian function.
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The charged particle multiplicity distribution is divided into different percent, 0-5%, 5-10%, ..., 70-80%.
There is a detector inefficiency for peripheral collisions event which is because of too small number of
tracks to reconstruct an event. A simpleMonte Carlo Glauber is usually used to simulate particle multiplicity
distribution and fitted to data.

Monte Carlo Glauber (MCG) model is a widely used model in heavy-ion physics. It has simple as-
sumptions:

1 Nucleons are randomly distributed by Wood-Saxon density distribution.
2 Nucleons travel in straight line trajectories.
3 Nucleons has only once inelastic collision at most.
4 A pair of nucleus will collide with each other if distance < √𝜎NN

inel/𝜋

The particle production is described by a two-component model, 𝑑𝑁/𝑑𝜂 = (1 − 𝑥)𝑛pp
⟨𝑁part⟩

2 + 𝑥⟨𝑁coll⟩, in
which x is hardness parameter, 𝑛pp is particle production of p + p collisions, ⟨𝑁part⟩ is an average of number
of participants, and ⟨𝑁coll⟩ is an average of number of binary collisions. Final multiplicity is then produced
from binomial distribution given by

𝑃𝜇,𝑘(𝑁) =
Γ(𝑁 + 𝑘)

Γ(𝑁 + 1)Γ(𝑘) ⋅
(𝜇/𝑘)𝑁

(𝜇/𝑘 + 1)𝑁+𝑘 (3.2.1)

where 𝜇 is a mean value of particles generated from one source, and 𝑘 corresponds to an inverse of a width
of the distribution.

An additional parameter 𝜖 related to detector efficiency and acceptance is considered in Monte Carlo
Glauber simulation. Then the simulated multiplicity distribution is then compared to data and performed a
𝜒2 test for multiplicity > 10. I scanned those parameters, 𝑛pp, 𝑘, 𝑥, and 𝜖, to find a minimum 𝜒2.

Fig. 3.2.1 shows Reference multiplicity distribution from data (black circles) and Monte Carlo Glauber
simulation (red line). The vertical dashed lines indicate low edges in definition for centrality 0-5%, 5-10%,
10-20%, 20-30% which is shown in Table 3.3. From Fig. 3.2.1 it shows the Glauber simulation fits data well
for multiplicity < 90. For multiplicity > 90 the large tail in data is due to pileup events. The pileup effect
and corresponding correction will be discussed in Sec. 3.5.

3.3 Detector Efficiency Correction
TPC and TOF detectors are mainly used in particle identification, thus the efficiencies for both detectors

need to be considered in cumulants calculation.
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Figure 3.2.1: Reference multiplicity distribution (FXTMult3) in Au+Au collisions at √𝑠NN = 3GeV (black
circles), Glauber fitting (red line). The vertical dashed lines indicate different centrality bins.

31



博士学位论文

DOCTORAL DISSERTATION
CHAPTER 3. ANALYSIS DETAILS

Centrality (%) Nch ≥ ⟨Npart⟩ Pileup (%)
0–5 48 326(11) 2.32
5–10 38 282(8) 1.47
10–20 26 219(8) 1.28
20–30 16 157(7) 1.07
30–40 10 107(5) 0.90
40–50 6 70(5) 0.75
50–60 4 47(5) 0.64

Table 3.3: The uncorrected number (Nch) of charged particles excluding protons within the pseudo-rapidity
−2 < 𝜂 < 0 used for the centrality selection for Au+Au collisions at √𝑠NN = 3 GeV. The centrality classes
are expressed in % of total cross section. The lower boundary of the particle multiplicity (Nch) is included
for each centrality class. Values are provided for the average number of participants (⟨Npart⟩) and pileup
fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup
fraction from the minimum biased collisions is determined to be 0.46%. Values in the (.) are associated
systematic uncertainty.

The tracking efficiency in TPC is estimated by STARMonte Carlo simulation [73]. Monte Carlo tracks
are embedded into real tracks. Then all tracks are put into Geant simulation and going through TPC track
re-construction procedure. The efficiency is estimated by counting how many Monte Carlo tracks are re-
constructed compared to initial embedded ones.

The efficiency for TOF currently is done by a data-driven way. The matching efficiency for tracks of
TOF to TPC is considered. Track in TOF that has one or more matching track in TPC is considered as one
matched track. The efficiency can be described by

𝜖𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑
𝑁 (3.3.1)

where 𝜖𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 , 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑑 , and 𝑁 are is TOF matching efficiency, number of tracks in TOF that are matched
to TPC and total number of tracks detected in TOF.

According to the purity study shown in Fig. 3.1.4 that using only TPC for particle identification, proton
purity is above around 95% for total momentum 𝑝 > 2 GeV/𝑐 in lab frame. For higher momentum, the TOF
PID is used to ensure high purity sample selected.

The efficiency correction of cumulants consider detector efficiency is Binomial responded. In the
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Figure 3.3.1: TPC tracking efficiency (a) and TOF matching efficiency (b) as a function of transverse mo-
mentum 𝑝T (GeV/𝑐) and pseudo-rapidity 𝜂.

previous analysis [57, 74] of BES-I data, the conventional method [75] considers two efficiency bins for
single particle. For example, the efficiency value for lower 𝑝T (0.4 < 𝑝T < 0.8 GeV/𝑐) bin and higher 𝑝T
(0.8 < 𝑝T < 2.0 GeV/𝑐) bin are used. The efficiency are integrated over rapidity. To handle infinite effi-
ciency bins, a track-by-track efficiency correction method [76, 77] is applied in proton cumulant analysis.
Fig. 3.3.1 shows TPC (a) and TOF efficiency (b) as a function of 𝑝T and pseudo-rapidity 𝜂. It is seen that
the efficiency value is not uniform specifically for TOF. There are efficiency gaps because of gaps in TOF
modules.

3.4 Centrality Bin Width Correction
In order to show results and reduce the volume fluctuation effect (at 3GeV reference multiplicity is not

a good quantity to correspond to collision volume, but CBWC is still necessary. I’ll discuss this in Sec. 3.6.)
the centrality bin width correction method [72] is used to extract proper averages of cumulants and cumulant
ratios at each centrality bin. The number of events for each reference multiplicity is used as weight. The
method is described by

𝐶 =

𝑛
∑
𝑖

𝐶𝑖𝑁𝑖

𝑛
∑
𝑖

𝑁𝑖

(3.4.1)
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Figure 3.4.1: Proton cumulants up to 6th order as a function of reference multiplicity in Au+Au collisions
at √𝑠NN = 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. Centrality binned (wider
bin in plot) results with and without centrality bin width correction are shown with red circles and blue
squares, respectively. The cumulants as a function of reference multiplicity are shown with black circles.
The vertical dashed lines indicate the centrality classes, from right to left, 0 − 5%, 5 − 10%, 10 − 20%,
20 − 30%, 30 − 40%, 40 − 50% and 50 − 60%.
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where 𝐶𝑖, 𝐶 , and 𝑁𝑖 are average of cumulant at each centrality bin, cumulant at reference multiplicity bin,
and number of events at reference multiplicity bin.

Fig. 3.4.1 shows proton cumulants up to 6th order as a function of reference multiplicity in Au+Au col-
lisions at √𝑠NN = 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The results with
CBWC (red circles) follow the reference multiplicity dependence (black circles) while the results without
CBWC (blue squares) are exaggerated. This is because calculating cumulants in wider centrality bin means
performing calculation on the integral of proton distribution from a wide range of initial collision geometry.
The fluctuation of various collision volume is also included in the calculation of proton multiplicity distri-
bution. A few more words on the volume fluctuation, as shall be seen in Sec. 3.6 that reference multiplicity
may not be a good reference to initial collision geometry. A better reference quantity to collision geometry
together with the CBWC should mostly reduce volume fluctuation.

3.5 Pileup Effect
Pileup event is defined as an event contains more than one single-collision event. Pileup events are

because two or more collisions occur within a small time and space interval thus they are identified by
detector as one event, thus their particle multiplicity are simple combination of two single-collision events.
An evident signature of pileup events is a large tail shown in high end of reference multiplicity distribution.
As shown in Fig. 3.2.1, the long tail (black circles) for reference multiplicity from 90 to 140 are mainly
pileup events.

In the high luminosity fixed-target experiment, pileup events are large compared to collider mode, that
makes the pileup a non-negligible effect in higher-order cumulant analysis in fixed-target experiment. In
experiment, according to different response time of pileup events to sub-detectors, those pileup events are
usually removed by clean cuts. In the 3GeV analysis proton cumulant analysis, I used a pileup correction
method [78] for cumulants to correct the effect brought by pileup events and used an unfolding approach [79]
to estimate pileup fraction which is a necessary input for pileup correction.

3.5.1 Pileup Correction

The cumulant pileup correction method proposed in Ref. [78] assumed that pileup events are given by
the superpositions of two independent single-collision events.

Let 𝑃𝑚(𝑁) be a probability distribution function to find one event with 𝑁 particles at reference multi-
plicity 𝑚. Throughout this section I suppose that pileup events are formed by independent superposition of
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two single-collision events with the probability 𝛼. Then 𝑃𝑚(𝑁) can be rewritten as

𝑃𝑚(𝑁) = (1 − 𝛼𝑚)𝑃 t
𝑚(𝑁) + 𝛼𝑚𝑃 pu

𝑚 (𝑁) (3.5.1)

where 𝑃 t
𝑚(𝑁) and 𝑃 pu

𝑚 (𝑁) are probability distribution functions for single-collision event and pileup event
respectively. Pileup events at multiplicity 𝑚 can be decomposed into sub-pileup events whose multiplicity
satisfies 𝑚 = 𝑖 + 𝑗. By looping all possible combinations of 𝑖 and 𝑗 which satisfies 𝑚 = 𝑖 + 𝑗, probability
distribution function for pileup events is obtained and written as

𝑃 pu
𝑚 (𝑁) = ∑

𝑖,𝑗
𝛿𝑚,𝑖+𝑗𝑤𝑖,𝑗𝑃 sub

𝑖,𝑗 (𝑁) (3.5.2)

and

𝑃 𝑠𝑢𝑏
𝑖+𝑗 (𝑁) = ∑

𝑁𝑖,𝑁𝑗

𝛿𝑁,𝑁𝑖+𝑁𝑗 𝑃 𝑡
𝑖 (𝑁𝑖)𝑃 𝑡

𝑗 (𝑁𝑗) (3.5.3)

where 𝑤𝑖,𝑗 is the probability to observe a sub-pileup event among all pileup events at multiplicity 𝑚 and
𝑃 𝑠𝑢𝑏

𝑖,𝑗 (𝑁) represents the probability distribution of 𝑁 in the sub-pileup events labeled by (𝑖, 𝑗). 𝑖 and 𝑗
commutes in 𝑤𝑖,𝑗 which gives 𝑤𝑖,𝑗 = 𝑤𝑗,𝑖. Exhausting all combinations of 𝑖 and 𝑗 there should be

∑
𝑖,𝑗

𝛿𝑚,𝑖+𝑗𝑤𝑖,𝑗 = 1. (3.5.4)

I also consider a multiplicity distribution 𝑇 (𝑚) used for centrality determination. The pileup events at
the 𝑚-th multiplicity bin are then decomposed into two sub-pileup events which satisfies 𝑚 = 𝑖 + 𝑗. Then I
get [78]

𝑤𝑖,𝑗 = 𝛼𝑇 (𝑖)𝑇 (𝑗)
∑𝑖,𝑗 𝛿𝑚,𝑖+𝑗𝛼𝑇 (𝑖)𝑇 (𝑗) , (3.5.5)

𝛼𝑚 =
𝛼 ∑𝑖,𝑗 𝛿𝑚,𝑖+𝑗𝑇 (𝑖)𝑇 (𝑗)

(1 − 𝛼)𝑇 (𝑚) + 𝛼 ∑𝑖,𝑗 𝛿𝑚,𝑖+𝑗𝑇 (𝑖)𝑇 (𝑗) . (3.5.6)

The Equation 3.5.5 defines the weight of sub-pileup events having multiplicities 𝑖 and 𝑗 while Eq. 3.5.6
represents the pileup fraction at 𝑚-th multiplicity bin.

From Eqs. 3.5.1, 3.5.2, and 3.5.3 the moment generating function at multiplicity 𝑚 can be expressed as

𝐺𝑚(𝜃) = ∑
𝑁

𝑒𝑁𝜃𝑃𝑚(𝑁)

= (1 − 𝛼𝑚)𝐺𝑡
𝑚(𝜃) + 𝛼𝑚 ∑

𝑖,𝑗
𝛿𝑚,𝑖+𝑗𝑤𝑖,𝑗𝐺𝑠𝑢𝑏

𝑖,𝑗 (𝜃), (3.5.7)
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with

𝐺𝑠𝑢𝑏
𝑖,𝑗 (𝜃) = 𝐺𝑡

𝑖(𝜃)𝐺𝑡
𝑗(𝜃), (3.5.8)

where 𝐺𝑡
𝑚(𝜃) = ∑

𝑁
𝑒𝑁𝜃𝑃 𝑡

𝑚(𝑁) is the moment generating function of 𝑃 𝑡
𝑚(𝑁). The 𝑟th order moment of the

observed distribution 𝑃𝑚(𝑁) is given by

⟨𝑁𝑟⟩𝑚 = ∑𝑚
𝑁𝑟𝑃𝑚(𝑁) = 𝑑𝑟

𝑑𝜃𝑟 𝐺(𝜃)|𝜃=0

= (1 − 𝛼𝑚)⟨𝑁𝑟⟩𝑡
𝑚 + 𝛼𝑚 ∑

𝑖,𝑗
𝛿𝑚,𝑖+𝑗𝑤𝑖,𝑗⟨𝑁𝑟⟩𝑠𝑢𝑏

𝑖,𝑗 , (3.5.9)

with ⟨𝑁𝑟⟩𝑡
𝑚 = ∑

𝑁
𝑁𝑟𝑃 𝑡

𝑚(𝑁) and

⟨𝑁𝑟⟩𝑠𝑢𝑏
𝑖,𝑗 = ∑

𝑁
𝑁𝑟𝑃 𝑠𝑢𝑏

𝑖,𝑗 (𝑁) =
𝑟

∑
𝑘=0

(
𝑟
𝑘) ⟨𝑁𝑟−𝑘⟩𝑡

𝑖⟨𝑁𝑘⟩𝑡
𝑗 . (3.5.10)

Equation 3.5.10 can be alternatively written by cumulant in a compact form

⟨𝑁𝑟⟩𝑠𝑢𝑏
𝑖,𝑗,𝑐 = ⟨𝑁𝑟⟩𝑡

𝑖,𝑐 + ⟨𝑁𝑟⟩𝑡
𝑗,𝑐 , (3.5.11)

where ⟨𝑁𝑟⟩𝑠𝑢𝑏
𝑖,𝑗,𝑐 and ⟨𝑁𝑟⟩𝑡

𝑗,𝑐 are the cumulants of sub-pileup and true distributions, respectively. True mo-
ments are expressed recursively in terms of the measured moments at the lower multiplicity bins by solving
Eqs. 3.5.9 and 3.5.10:

⟨𝑁𝑟⟩t𝑚 =
⟨𝑁𝑟⟩𝑚 − 𝛼𝑚𝛽(𝑟)

𝑚

1 − 𝛼𝑚 + 2𝛼𝑚𝑤𝑚,0
, (3.5.12)

with

𝛽(𝑟)
𝑚 = 𝜇(𝑟)

𝑚 + ∑
𝑖,𝑗>0

𝛿𝑚,𝑖+𝑗𝑤𝑖,𝑗⟨𝑁𝑟⟩sub𝑖,𝑗 , (3.5.13)

and

𝜇(𝑟)
𝑚 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2𝑤𝑚,0

𝑟−1

∑
𝑘=0 (

𝑟
𝑘)⟨𝑁𝑟−𝑘⟩t0⟨𝑁𝑘⟩t𝑚 (𝑚 > 0),

𝑟−1

∑
𝑘=1 (

𝑟
𝑘)⟨𝑁𝑟−𝑘⟩t0⟨𝑁𝑘⟩t0 (𝑚 = 0),

(3.5.14)
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where ⟨𝑁𝑟⟩𝑡
𝑚 and ⟨𝑁𝑟⟩𝑚 represent 𝑟th order true andmeasuredmoments at𝑚thmultiplicity bin, respectively.

With true moments of each order obtained, one then can express true cumulants in terms of true moments.
As can be seen from Eqs. (3.5.5)–(3.5.14), the necessary information to perform the pileup corrections are
true multiplicity distribution 𝑇 (𝑚) and pileup fraction 𝛼.

In real experiments, we can only measure the multiplicity distributions including pileup events, to
extract the true multiplicity distribution for single-collision events one naive way is to use Monte-Carlo
Glauber and particle production model to fit the measured multiplicity distribution. As the Glauber model
is widely used for centrality determination it is firstly tried.

3.5.2 Pileup Correction Validation Using UrQMDModel

To validate the pileup correction method as well as the unfolding approach which will be shown in
Sec. 3.5.3 I use single-collision events from UrQMD model [58, 59] to simulate pileup events and test the
correction method. I show in this section a closure test as well as a realistic case for which single-collision
distribution and pileup fraction is extracted from Glauber fit.

The UrQMD code I used is of version 3.4 and configured as the standard cascade mode. Around 80
million events are generated in Au+Au collisions at √𝑠NN = 3GeV with the impact parameter from 0 to
15 fm. To simulate pileup events in experiment I randomly added up two UrQMD events under a prede-
fined pileup fraction (𝛼 = 0.5%) to produce pileup UrQMD events. Protons within rapidity and transverse
momentum of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 (GeV/𝑐) are selected for cumulant calculations of pro-
ton multiplicity distributions. Collision centrality is defined by dividing reference multiplicity distribution
into different percent (0-5%, 5-10%, 10-20%, ..., 70-80%). Reference particles are using 𝜋± and 𝐾± with
pseudo-rapidity |𝜂| < 1. where (anti)protons are excluded to avoid self-correlation effect [72].

Proton cumulants and their ratios up to 4th order are calculated for several data sets. Fig. 3.5.2 shows
cumulants and their ratios as a function of pileup fraction 1% < 𝛼 < 10% in which the black points are
calculation for pure UrQMD data, the black squares are calculation for Pileup-UrQMD data in which pileup
events are simulated and added in pure UrQMD events, the red stars are a closure test in which pileup
correction is performed using correction parameters directly given by UrQMD data, and the blue circles
are calculation with pileup correction parameters determined by Glauber model. Comparing black squares
to black circles, it is seen that cumulants and their ratios are enhanced by pileup events. It is worth noting
that the cumulant ratio 𝐶4/𝐶2 even changes its sign from negative to positive then goes above unity when
increasing pileup probability 𝛼. Comparing red stars and blue circles to black circles, it is found that with
a precise estimation of 𝛼, the pileup correction works well for pileup probability up to 10%. While due to
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Figure 3.5.1: Reference multiplicity distribution (red squares) in Au+Au collisions at √𝑠NN = 3GeV from
UrQMD model. Reference particles are using 𝜋± and 𝐾± with pseudo-rapidity |𝜂| < 1. The black circles
are reference multiplicity distribution with pileup events which are simulated using pure UrQMD events
under a pileup fraction 𝛼 = 0.5%. The blue line is Monte-Carlo Glauber fit to Pileup-UrQMD distribution
(black circles) while the blue dashed line is a best fit to Pileup-UrQMD distribution using single-collision
distribution fromMonte-Carlo Glauber fit(blue line). The black line in lower panel is a ratio of Raw-UrQMD
distribution over distribution from Glauber fit.
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Figure 3.5.2: Pileup level dependence of cumulants and cumulant ratios up to 4th order in most central 5%
Au+Au collisions at √𝑠NN = 3GeV from UrQMDmodel. The results from default UrQMD are shown with
black circles while results with pileup events are shown with black squares. The red stars and blue circles
are results with pileup correction based on UrQMD and Glauber model, respectively.
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the imperfect Glauber fit to Pileup-UrQMD data, the calculations (blue circles) using parameters extracted
by the fit show deviation from true results (black circles). From above test, we see that pileup correction
works well in the ideal case and the effectiveness mostly depends on how precise the pileup probability is
estimated.

3.5.3 Pileup Correction with Unfolding Approach

To extract pileup probability to a higher precision, a model independent method named unfolding ap-
proach [80, 79] is tested and used in data analysis. The unfolding approach [80] was originally developed
to reconstruct particle multiplicity distribution in terms of non-binomial detector efficiency. It is found the
similar methodology is applicable in pileup correction. As discussed in Sec. 3.5.2, pileup corrections de-
pend on how one can precisely extract the true multiplicity distribution for single-collision events. The issue
is that the Glauber and particle production models, which are commonly used for centrality determination,
cannot fit even the UrQMD data perfectly. A model independent way is necessary to make sure the quality
of pileup corrections. In this section, I’ll show the procedures to extract a precise pileup parameter using
unfolding approach and a test on cumulants of this approach.

Figure 3.5.3 depicts a flowchart for the unfolding procedure. In real experiments, the multiplicity
distribution is measuredwith the pileup events on top of the single-collision events as shown in the left row in
Fig. 3.5.3. ”True” and ”Measured” in the figure represent the multiplicity distributions for single-collisions
and inclusive distributions for both single-collisions and pileup events. They are labeled as ”(a) UrQMD
experiment true” and ”(b) UrQMD experiment measured”, respectively. Both are related via a numerical
process to generate pileup events called ”Pileup Filter”, which is defined as an independent superposition
of two single-collision events with probability 𝛼 for simplicity. Similarly, we suppose Monte-Carlo samples
labeled as ”(c) toy-MC true” and ”(d) toy-MC measured”. They are also related via the same pileup filter
between (a) and (b). In the rest of this paper, samples in the top row will be referred to as ”true coordinates”,
while the bottom row will be ”measured coordinates”. The goal of the unfolding approach is to reconstruct
(a) starting from (c). Detailed procedures are shown below:

0 Generate (a) UrQMD-experiment and (b) UrQMD-measured samples. They correspond to raw-UrQMD
and pileup-UrQMD distributions in Sec. 3.5.2.

1 Generate a (c) toy-MC distribution based on the Glauber model.

2 The pileup filter is applied to (c) to get (d) toy-MC measured distribution.
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Figure 3.5.3: Flowcharts in unfolding to extract the true multiplicity distribution. The dotted arrows show
the procedures repeated for iterations.
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Figure 3.5.5: (Top) Multiplicity distributions for UrQMD, Glauber fit, and MC samples at 100th iteration.
(Bottom) Difference between UrQMD and MC samples as a function of multiplicity. Left-hand side panels
are for the true coordinates, while right-hand side panels are for the measured coordinates. The range of the
x-axis is limited from 10 to 70 for illustration purpose.
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3 During the MC process from 1 to 2, I compute the reversed response matrices, 𝑅, numerically as shown
in Fig. 3.5.4. Note that any inversion procedure is not necessary here.

4 The correction function is determined by subtracting (b) from (d). It represents the difference between
UrQMD-experiment and toy-MC distributions in the measured coordinates. See lower panels in
Fig. 3.5.5.

5 The response matrix 𝑅 is multiplied to (f) to get (e) the correction functions in the true coordinates.

6 By adding (e) to (c), the toy-MC distribution is modified to be closer to (a).

7 Repeat 1–6 until the correction functions become close enough to zero.

The response matrices in 3 are defined as

𝑇 (𝑖, 𝑗) = ∑
𝑖,𝑗

𝛿𝑚;𝑖,𝑗𝑅(𝑖, 𝑗; 𝑚) ̃𝑇 (𝑚), (3.5.15)

where ̃𝑇 (𝑚) represents the probability distribution function of multiplicity in pileup events at measured
coordinates, and 𝑇 (𝑖, 𝑗) is a correlation between two multiplicities which forms pileup events. 𝑃 (𝑖, 𝑗) and
𝑅(𝑖, 𝑗; 𝑚) are shown in Fig. 3.5.4. Distributions in Fig. 3.5.4-(b) are projections of Fig. 3.5.4-(a) onto a diag-
onal plane for 𝑚 = 10, 50, and 100 with 𝑚 = 𝑖 + 𝑗. The response matrices relate the multiplicity 𝑚 observed
in pileup events at measured coordinates and their original multiplicities from two single-collision events,
𝑖 and 𝑗 at true coordinates. Note that the response matrices are determined during the numerical process
of the pileup filter for each iteration. Fig. 3.5.5 shows multiplicity distributions and correction functions as
a function of multiplicity for true and measured coordinates, respectively. The initial distribution of MC
samples are taken from the best fit of the Glauber model to the UrQMD-experiment distribution in the true
coordinates. Nevertheless, there are large differences from the UrQMD-experiment distribution as can be
seen in the correction functions. After 100 iterations, the correction functions are found to be flat, which
indicates that the multiplicity distribution for MC samples are successfully unfolded to UrQMD-experiment
distributions. The resulting multiplicity distribution for the true coordinates can be used to determine the
parameters for pileup corrections according to Eq. 3.5.5.

In our simulations the preseted value of pileup probability 𝛼 is used for the unfolding approach. In
real experiments, the pileup probability can be basically calculated from the beam rates and thickness of the
target material. To determine this more precisely, the unfolding approach needs to be repeated by varying
the pileup probability to find the best parameter which yields the smallest values of 𝜒2/NDF.
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Let us then move to the pileup corrections on cumulants. The multiplicity distribution for the true
coordinate after 100 iterations is used to define the parameters for pileup corrections. Results are shown
in Fig. 3.5.6 for up to the 4th-order cumulant as a function of centrality. Due to the effect of pileup events,
the results at the most central collisions deviate from the true value of cumulants. The results of pileup
correction using Glauber fits, however, still deviate from the true cumulants, which is because the Glauber
fit is not perfect enough to describe the multiplicity distribution in UrQMD, as discussed in Sec. 3.5.2.
We then apply pileup corrections with correction parameters determined by the unfolding approach. The
results are consistent with true values of cumulants in the most central collisions. Therefore, it is concluded
that our unfolding approach works well to determine the correction parameters for pileup corrections. In
this work, we simulated pileup events by the superposition of two single-collision events, in fact the pileup
events merged frommore than two single-collision events can be also studied. In the unfolding approach the
MC samples are taken from the best fit of the Glauber model to the UrQMD-experiment distributions. In
principle, MC samples can start from any distributions like a flat distribution, but we propose to start from
the distribution close to the experimental data to avoid possible systematics on the initial conditions of the
MC samples.

Figure 3.5.6 shows cumulants and their ratios up to the 4th-order as a function of centrality. Due to the
effect of pileup events, the results at the most central collisions deviate from the true value of cumulants.
The results of pileup correction using Glauber fits, however, still deviate from the true cumulants, which
is because the Glauber fit is not perfect enough to describe the multiplicity distribution in UrQMD. We
then apply pileup corrections with correction parameters determined by the unfolding approach. The results
are consistent with true values of cumulants in the most central collisions. Therefore, it is concluded that
our unfolding approach works well to determine the correction parameters for pileup corrections. In this
work, we simulated pileup events by the superposition of two single-collision events, in fact the pileup
events merged from more than two single-collision events can be also studied. In the unfolding approach
the MC samples are taken from the best fit of the Glauber model to the UrQMD-experiment distributions.
In principle, MC samples can start from any distributions like a flat distribution, but we propose to start
from the distribution close to the experimental data to avoid possible systematics on the initial conditions
of the MC samples.

3.5.4 Pileup Correction on Data

In Fig. 3.5.7, the left panel shows reference multiplicity distribution for data (black circles), unfolded
single-collision distribution (blue line), and pileup events distribution (red line) which is subtracted from
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data and single-collision distribution. Then the pileup probability is also determinedwhich is 0.46% ± 0.09%
of all events and 2.10% ± 0.40% in the 0-5% centrality class. Right panel of Fig. 3.5.7 shows a correlation
distribution of unfolded single-collision reference multiplicity.
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Figure 3.5.8: Proton cumulants up to 6th-order as a function of reference multiplicity in Au+Au collisions
at √𝑠NN = 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. Centrality binned
(wider bin in plot) results with and without pileup correction are shown with red circles and blue squares,
respectively. The cumulants with and without pileup correction as a function of reference multiplicity are
shownwith black circles and black squares, respectively. Same to Fig. 3.4.1 the vertical dashed lines indicate
the centrality classes.

Figure 3.5.8 shows proton cumulants up to 6th-order as a function of reference multiplicity in Au+Au
collisions at √𝑠NN = 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The pileup
correction is done for each reference multiplicity bin (black circles) compared to that without correction
(black squares). Centrality binned (wider bin in plot) results with and without pileup correction are then
obtained by performing CBWC. Comparing results with and without pileup correction for both fine bin and
wider bin, it is seen only cumulants from top 5% centrality class are modified. This is seen in UrQMD
calculation shown in Fig. 3.5.6. Similar to Fig. 3.5.8, Fig. 3.5.9 shows cumulant ratios up to 6th-order. A
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Figure 3.5.9: Proton cumulants up to 6th-order as a function of reference multiplicity in Au+Au collisions
at √𝑠NN = 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The markers in plot are
same to Fig. 3.5.8.
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similar conclusion is drawn from the comparison of results with and without pileup correction that only
most central centrality are affected by pileup effect.

Figure 3.5.10 shows cumulants and cumulant ratios as a function of ⟨𝑁part⟩ up to 6th-order in Au+Au
collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The
⟨𝑁part⟩ is the average of 𝑁part from Glauber Monte Carlo simulation. From a large 𝑁part to a low value it
represents 0-5%, 5-10%, ⋯, 50-60%. Results without or with pileup correction are shown with red circles
and black squares, respectively. The x axis is the average of number of participating nucleons 𝑁part. From
the comparison of results with and without pileup correction, it seems that result at most central centrality
is modified. It’s worth noting that 𝐶4/𝐶2 at most 5% centrality even changes sign from positive to negative.
Fig. 3.5.11 shows centrality dependence of correlation functions and their ratios up to 6th-order in Au+Au
collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. A
similar conclusion can be draw from the comparison of results with and without pileup correction.
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Figure 3.5.10: Centrality dependence of cumulants and cumulant ratios up to 6th-order in Au+Au collisions
at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. Results without
or with pileup correction are shown with red circles and black squares, respectively.
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Figure 3.5.11: Centrality dependence of correlation functions and correlation function ratios up to 6th-order
in Au+Au collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0
GeV/𝑐. Results without or with pileup correction are shown with red circles and black squares, respectively.
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3.6 Initial Volume Fluctuation Correction
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Figure 3.6.1: Number of participating nucleons (𝑁part) distribution from Glauber (black lines) and UrQMD
(blue lines) model, respectively. The red shaded areas and blue lines indicate 𝑁part distributions from cen-
trality classes of 0-5%, 5-10%, ⋯, 50-60% which are determined by reference multiplicity.

In the field of heavy ion physics, collision volume is not a well-defined quantity. It reflects initial col-
lision geometry and is usually related to number of participants (or called wounded nucleons proposed in
Wound Nucleon Model [81]) which is the number of nucleons in one collision that has at least one inelastic
interaction. In experiment, reference multiplicity is usually used to define centrality using the information
that more central collision has a larger particle multiplicity. But the mapping of collision volume to refer-
ence multiplicity is not one-to-one correspondence. In a word about the VF effect, in fluctuation analysis
using a centrality reference like charged particle reference multiplicity or other references in experiment, ad-
ditional fluctuations due to fluctuating collision volume are mixed with the dynamical fluctuations because
of QCD critical point or phase transition. The volume fluctuation effect is due a weak correlation between
experimental centrality reference and collision volume.

In low energy fixed-target experiment, because of limited value of reference multiplicity, it is impor-
tant to take care of the volume fluctuation effect in fluctuation analysis. A volume fluctuation correction
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(VFC) method is proposed in Ref. [82]. The method based on Wound Nucleon Model [81] assumes that
particle production in heavy ion collision is independently contributed from wounded nucleons. In another
word, total particles produced in a collision are a sum of particles produced from each wounded nucleon.
No correlation is considered between each wounded nucleon when producing particles. The deduction of
volume corrected moments is shown below briefly.

Let us define the probability to find 𝑛 particle from a wounded nucleon is 𝑃 (𝑛), the moment generating
function is written as 𝑀(𝑡) = ∫∞

−∞ 𝑒𝑡⋅𝑛𝑃 (𝑛)𝑑𝑛. Total particles 𝑁 is written as 𝑁 = 𝑛1 + 𝑛2 + 𝑛3 + ⋯
where 𝑛𝑖 represents particle from each source and the corresponding moment generating function is then
the product of that from each wounded nucleon 𝑀(𝑡)𝑁 = [𝑀(𝑡)]𝑁𝑤 where 𝑁𝑤 is defined as number of
wounded nucleons. Then it is easily to calculate raw moments of particle number distribution 𝑁 of any
order by taking derivatives of 𝑀(𝑡)𝑁 . The 1st and 2nd-order raw moments are

⟨𝑁⟩𝑓 = [
𝑑𝑀𝑁(𝑡)

𝑑𝑡 ]𝑡=0
= [𝑁𝑤 [𝑀(𝑡)]𝑁𝑤−1 𝑑𝑀(𝑡)

𝑑𝑡 ] = 𝑁𝑤⟨𝑛⟩ (3.6.1)

and

⟨𝑁2⟩𝑓 =
[

𝑑2𝑀𝑁(𝑡)
𝑑𝑡2 ]𝑡=0

= 𝑁𝑤(𝑁𝑤 − 1)⟨𝑛⟩2 + 𝑁𝑤⟨𝑛2⟩, (3.6.2)

where ⟨.⟩ indicates taking average and ⟨𝑁⟩𝑓 mean fixed number of wounded nucleons. Above equations
apply to fixed number of wounded nucleons. For fluctuating wounded nucleon number with a probability
𝑃 (𝑁𝑤), Eqs. 3.6.1 and 3.6.2 can be rewritten as

⟨𝑁⟩ = ∑
𝑁𝑤

⟨𝑁⟩𝑓 𝑃 (𝑁𝑤) = ⟨𝑁𝑤⟩⟨𝑛⟩ (3.6.3)

and

⟨𝑁2⟩ = ∑
𝑁𝑤

⟨𝑁2⟩𝑓 𝑃 (𝑁𝑤) = ⟨𝑁𝑤(𝑁𝑤 − 1)⟩⟨𝑛⟩2 + ⟨𝑁𝑤⟩⟨𝑛2⟩. (3.6.4)

Higher order moments are obtained similarly. The final volume fluctuation corrected cumulants up to 6th-
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order expressed in terms of moments are shown below,

𝐶1,𝑁 = 𝐶1,𝑁𝑤𝐶1,𝑛,
𝐶2,𝑁 = 𝐶1,𝑁𝑤𝐶2,𝑛 + 𝐶2

1,𝑛𝐶2,𝑁𝑤 ,

𝐶3,𝑁 = 𝐶1,𝑁𝑤𝐶3,𝑛 + 3𝐶1,𝑛𝐶2,𝑛𝐶2,𝑁𝑤 + 𝐶3
1,𝑛𝐶3,𝑁𝑤 ,

𝐶4,𝑁 = 𝐶1,𝑁𝑤𝐶4,𝑛 + 4𝐶1,𝑛𝐶3,𝑛𝐶2,𝑁𝑤 + 3𝐶2
2,𝑛𝐶2,𝑁𝑤 + 6𝐶2

1,𝑛𝐶2,𝑛𝐶3,𝑁𝑤 + 𝐶4
1,𝑛𝐶4,𝑁𝑤 ,

𝐶5,𝑁 = 𝐶1,𝑁𝑤𝐶5,𝑛 + 5𝐶1,𝑛𝐶4,𝑛𝐶2,𝑁𝑤 + 10𝐶2,𝑛𝐶3,𝑛𝐶2,𝑁𝑤 + 10𝐶3,𝑛𝐶2
1,𝑛𝐶3,𝑁𝑤

+ 15𝐶2
2,𝑛𝐶1,𝑛𝐶3,𝑁𝑤 + 10𝐶2,𝑛𝐶3

1,𝑛𝐶4,𝑁𝑤 + 𝐶5
1,𝑛𝐶5,𝑁𝑤 ,

𝐶6,𝑁 = 𝐶1,𝑁𝑤𝐶6,𝑛 + 6𝐶5,𝑛𝐶1,𝑛𝐶2,𝑁𝑤 + 15𝐶4,𝑛𝐶2,𝑛𝐶2,𝑁𝑤 + 10𝐶2
3,𝑛𝐶2,𝑁𝑤

+ 15𝐶4,𝑛𝐶2
1,𝑛𝐶3,𝑁𝑤 + 60𝐶3,𝑛𝐶2,𝑛𝐶1,𝑛𝐶3,𝑁𝑤 + 15𝐶3

2,𝑛𝐶3,𝑁𝑤 + 20𝐶3,𝑛𝐶3
1,𝑛𝐶4,𝑁𝑤

+ 45𝐶2
2,𝑛𝐶2

1,𝑛𝐶4,𝑁𝑤 + 15𝐶2,𝑛𝐶4
1,𝑛𝐶5,𝑁𝑤 + 𝐶6

1,𝑛𝐶6,𝑁𝑤 ,

(3.6.5)

where 𝐶𝑖,𝑁 , 𝐶𝑖,𝑛 and 𝐶𝑖,𝑁𝑤 are 𝑖th order cumulant frommeasured 𝑁 distribution, each source’s 𝑛 distribution,
and 𝑁𝑤 distribution. From Eqs. 3.6.5, it is seen that cumulant from 𝑁𝑤 is involved in measured cumulant
𝐶𝑖,𝑁 . Under an unrealistic case the cumulant 𝐶′

𝑖,𝑁 without contribution from 𝑁𝑤 can be expressed by

𝐶′
𝑖,𝑁 = ⟨𝑁𝑤⟩ ⋅ 𝐶𝑖,𝑛. (3.6.6)

The necessary input is only distribution of 𝑁𝑤 which is not available in data and has to rely on model
simulation.

3.6.1 Model Test of Volume Fluctuation Correction

In this section, I show a test the volume fluctuation correction using Eqs. 3.6.5 within UrQMD model.
Around 80 million minbias events are generated using UrQMD program (v3.4) configured as the standard
cascade mode. The necessary 𝑁𝑤 distribution for correction (will use 𝑁part instead in following section) is
from UrQMD data or a Glauber Monte Carlo simulation. For real data analysis, one has to rely on Glauber
simulation to give this 𝑁part distribution. In UrQMDmodel, 𝑁part distribution can be given without Glauber
model and the 𝑁part distribution should be more precise than that given by the Glauber model similation.

Figure 3.6.1 shows number of participating nucleon (𝑁part) distribution from UrQMD (dash line) and
Glauber model (solid line) in Au+Au collisions at √𝑠NN = 3GeV where the blue and red shaded areas are
for 0-5% collisions determined by reference multiplicity. It is seen that UrQMD and Glauber show different
shapes for 𝑁part distribution which brings difference to volume fluctuation corrected result.
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Figure 3.6.2: Centrality dependence of cumulants and cumulant ratios in Au+Au collisions at √𝑠NN =
3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐 from UrQMD model.
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Figure 3.6.3: Left panel(a): Reference multiplicity distribution v.s. number of participating nucleon (𝑁part)
distribution from UrQMD model. Right panel(b): 𝑁part RMS (root-mean-square) as a function of reference
multiplicity. The vertical lines indicate average 𝑁part RMS for each centrality class.
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Figure 3.6.2 shows centrality dependence of cumulants in Au+Au collisions at √𝑠NN = 3GeV with
kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐 within UrQMDmodel. The blue open circles
represent a default calculation in UrQMD that cumulants and their ratios are calculated in each RefMult3 bin
then are performed CBWC using number of events as weight. The black circles and crosses are calculation
with volume fluctuation correction using 𝑁part from UrQMD and Glauber model, respectively. Comparing
volume fluctuation corrected cumulant ratios (black circles and crosses) with that in default calculation
(blue open circles), it is seen that results from most central and peripheral collisions are least modified by
volume fluctuation correction. This is expected from Fig. 3.6.3 panel (b) which shows 𝑁part RMSwith fixed
reference multiplicity. Figure 3.6.3 panel (a) shows correlation between reference multiplicity and 𝑁part in
Au+Au collisions at √𝑠NN = 3GeV from UrQMD model. The 𝑁part RMS, width of 𝑁part distribution for
each referencemultiplicity bin, are small for most central and peripheral, and large for mid-central collisions.
In Fig. 3.6.2, volume fluctuation corrected results (black circles and crosses) show least effect formost central
collisions.

As a baseline without contribution from volume fluctuation I calculate cumulants in terms of 𝑁part.
Black open squares in Fig. 3.6.2 are cumulants and their ratios as a function of 𝑁part. 𝑁part is also used
to determine different % of centrality, for example 0-5%, 5-10%, ⋯, 50-60%, then we can apply CBWC to
the 𝑁part dependence of cumulants using number of events as weight at individual 𝑁part bin. This result is
shown with red solid squares and is genuine result without volume fluctuation. Comparing results with or
without volume fluctuation correction to the genuine result, we see that in most central centrality class the
volume corrected results are close to results calculated with respect to 𝑁part, but one can still see residual
effects from volume fluctuation.

3.6.2 Volume Fluctuation Correction on Data

With the 𝑁part distributions extracted from the Glauber and UrQMD model, the volume fluctuation
correction can then be applied on data. Note that the reference multiplicity distribution from the UrQMD
model is scaled to fit into data. The volume fluctuation is done at each reference multiplicity bin and is
applied CBWC to obtain centrality binned results.

Figures 3.6.4 and 3.6.5 show proton cumulants and ratios up to 6th-order in Au+Au collisions at
√𝑠NN= 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The fine bin results are
cumulants as a function of reference multiplicity while wider bin results are for centrality binned cumulants.
By definition shown in Eq. 3.6.5 and Eq. 3.6.6, mean value of proton multiplicity (𝐶1) is superposition of
contributions from each sources thus is not corrected. Overall, comparing results with and without volume
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Figure 3.6.4: Proton cumulants up to 6th-order as a function of reference multiplicity in Au+Au collisions
at √𝑠NN = 3GeV within acceptance of −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. Centrality binned (wider
bin in plot) results with volume fluctuation correction using Glauber, UrQMD model and the result without
correction are shown with red circles, blue squares, and yellow triangles, respectively. The corresponding
fine bind results are shown with black circles, black triangles, and black squares, respectively. The vertical
dashed lines indicate the centrality classes, from right to left, 0−5%, 5−10%, 10−20%, 20−30%, 30−40%,
40 − 50% and 50 − 60%.
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30 − 40%, 40 − 50% and 50 − 60%.
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correction, for higher order cumulants, a maximum difference is seen around mid-central centrality and
the difference slightly depends on the order of the cumulants. In the most central centrality, the difference
between results with and without the correction is small for all cumulants 𝐶𝑖, 𝑖 > 3. It is also seen that
centrality binned results follow the trend of reference multiplicity dependence, thus the CBWC procedure is
necessary in order to extract properly centrality binned results. It is worth noting that the results using dif-
ferent 𝑁part to perform volume correction show clear difference for cumulants 𝐶𝑖, 𝑖 = 2, 3, 4. The correction
shows strong model dependence on 𝑁part.

3.7 UrQMD Calculation
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Figure 3.7.1: Cumulants and cumulant ratios up to 4th-order of proton multiplicity distributions in Au+Au
collisions at √𝑠NN= 3GeV within −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐 within UrQMD model.

The Ultra-relativistic Quantum Molecular Dynamics [58, 59] (UrQMD) is a microscopic transport
model, which is used to simulate the time evolution of (ultra-) relativistic heavy-ion collisions from 1AGeV
fixed-target energies up to collider energies of √𝑠NN = 200GeV from initial reaction-state to fragmenta-
tion into hadrons and then covariant propagation of hadrons and resonances through scatterings and de-
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cays. UrQMD model has been quite successful and widely applied towards heavy-ion phenomenology at a
wide range of energy coverage from SIS to RHIC. In UrQMD model, hadron interactions below √𝑠NN =
5GeV are described by interactions between hadrons and resonances. At collision energies above √𝑠NN =
5GeV, the excitation of color strings and their fragmentation into hadrons dominates particle production.
In UrQMD, hadrons have explicit space-time evolution trajectories and does not contain any de-confined
quarks degrees of freedom which means no phase transition physics are implemented. So results from
UrQMD model can be used as a non-critical baseline for experimentally measured higher-order cumulants.

In this section I show a comparison of UrQMD (v3.4) calculations using two configurations, the cascade
and mean field mode. By default a cascade mode is used in which there is no nuclear potential. The Skyrme
type potential (including Yukuka and Coulomb potentials) is available in UrQMD codes and is also used
in UrQMD simulation. At low energy nuclear potential is a non-negligible effect, thus a comparison of
calculation in both modes is necessary as a baseline for the comparison with experimental measurements. I
generated around 80 million and 10 million events in cascade and Skyrme mode, respectively, and calculate
cumulants in a same manner that is used for data. Figure 3.7.1 shows centrality dependence of proton
cumulants up to 4th-order in Au+Au collisions at √𝑠NN= 3GeV within acceptance of −0.5 < 𝑦 < 0 and
0.4 < 𝑝T < 2.0 GeV/𝑐 from UrQMD model. It is seen that cumulants and ratios are close within statistical
uncertainty in both calculations. Thus for qualitatively comparison with experimental data, the cascade
mode should be fine.

3.8 Statistical and Systematic Uncertainty Estimation

3.8.1 Statistical Uncertainty

The statistical uncertainties are obtained using the Bootstrap approach [83] in which events are re-
sampled with replacement and the analysis is re-run. The Bootstrap procedure is repeated for 200 times
and the statistical uncertainty is the standard deviation of the observable, such as the cumulants and their
ratios. The analytical method called Delta theorem [75, 84] to evaluate statistical uncertainty are also tested
to crosscheck the uncertainty. In Appendix B and C I show analytical equations derived by Delta theorem.
Equations in Appendix B are for efficiency uncorrected cumulants and correlation functions while equations
in Appendix C are for efficiency corrected ones. Due to limit of thesis length and number of terms is too
large for efficiency corrected formulas, only equations up to 2nd order are listed. One can use the shared
Python code to generate higher order equations.
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3.8.2 Systematic Uncertainty

The systematic uncertainty of the cumulant calculation can be subdivided into three categories: un-
certainty associated with a STAR Monte Carlo simulation, pileup correction, and centrality determination.
The STAR Monte Carlo simulation includes the efficiency in the TPC and TOF, the track reconstruction
requirements (maximum of DCA, minimum TPC spatial points), and the PID requirements (𝑛𝜎Proton and
mass-squared cut). The centrality determination for each centrality class is given in Tab. 3.3. The effect of
lowering the dE/dx cut to |𝑛𝜎Proton| < 2 was tested but did not affect the final result.

To estimate the systematic uncertainty, the analysis was repeated with different analysis requirements
which are outlined in Tab. 3.4. The difference between the systematic analyses and nominal analysis in
𝐶2/𝐶1, 𝐶3/𝐶2, and 𝐶4/𝐶2 in 0-5% central Au+Au collisions is listed in Tab. 3.5.

Source Nominal Values Variations
Centrality (Nch) see Tab. 3.3 ±1 Nch
Pileup fraction 0.46% 0.37%, 0.55%
TPC cuts 10 12 , 15
DCA < (cm) 3.0 2.75, 2.5, 2.0, 1.0
PID 𝑚2 cuts (GeV2/𝑐4) (0.6, 1.2) (0.5, 1.3), (0.7, 1.1)
Efficiency (𝜖) 𝜖 𝜖 × 1.05, 𝜖 × 0.95

Table 3.4: Sources, choices of nominal values and their variations for systematic uncertainties in proton
cumulant measurements from the fixed-target Au+Au collisions at 3GeV.

3.8.3 Uncertainty from Pileup Events

Estimating the systematic uncertainty on the pileup correction method is straightforward: The under-
lying pileup distribution is fitted with a 𝜒2 minimization, and to test the systematic uncertainty, the 𝜒2/ndf
is varied by ±1. As expected, the change in the pileup’s underlying distribution only affects the cumulants
in the most central centrality class. As seen in Fig. 3.8.2, decreasing the pileup probability pulls 𝐶4/𝐶2
closer to 1, while increasing the pileup probability pushes 𝐶4/𝐶2 to a lower value, potentially over cor-
recting. To see the increase with centrality, we can study the cumulants vs. FXTMult3, before applying
CBWC. Figure 3.8.1 shows the pileup correction at each FXTMult3 bin. In the most central centrality class
(49 ≤ FXTMult3 < 80), the systematic is dominated by the highest multiplicity bins. Note that the statistics

60



CHAPTER 3. ANALYSIS DETAILS 博士学位论文

DOCTORAL DISSERTATION

Source 𝐶2/𝐶1 𝐶3/𝐶2 𝐶4/𝐶2
1.218±0.001 0.954±0.005 -0.845±0.086

Centrality 0.014 0.041 0.042
Pileup 0.002 0.017 0.242
TPC cuts 0.002 0.015 0.24
DCA 0.008 0.060 0.78
PID 𝑚2 cuts 0.003 0.009 0.05
Efficiency 𝜖 0.011 0.023 0.27
Total 0.018 0.073 0.818

Table 3.5: Main contributors to systematic uncertainty to the proton cumulant ratios: 𝐶2/𝐶1, 𝐶3/𝐶2, and
𝐶4/𝐶2 from 0-5% central 3GeV Au+Au collisions. The first row shows values and statistical uncertainty
of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in
the table. The final total value is the quadratic sum of contributions from Centrality, pileup and variations
of cuts on TPC points, DCA and PID 𝑚2 and efficiency 𝜖 which are written as bold. Clearly this analysis is
systematic dominant.
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Figure 3.8.1: Left panel shows the uncertainty from pileup for the unbinned 𝐶4/𝐶2 as a function of FXT-
Mult3 for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝𝑇 < 2.0 (GeV/𝑐). The right panel shows the same information with a
limited x-axis from 0 < FXTMult3 < 60 and reduced y-axis to show the uncertainty at lower multiplicities.
The difference in 𝐶4/𝐶2 for the pileup high and pileup low correction (corresponding to 𝜒2 ± 1 of the pileup
fit) is shown by blue and green error bars, respectively.

Figure 3.8.2: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios (𝐶2/𝐶1, 𝐶3/𝐶2 and
𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The difference in cumulant and cumulants ratios
for the pileup high and pileup low correction (corresponding to 𝜒2 ± 1 of the pileup fit) is shown by blue
and green error bars, respectively.
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of these high multiplicity events significantly drop above multiplicities of 70. The large systematic uncer-
tainties at high FXTMult3 bins will be reduced from the CBWC method. This can be seen comparing the
most central centrality class in Fig. 3.8.1 and the final result with CBWC in Fig. 3.8.2.

3.8.4 Uncertainty from Efficiency and Related Cuts

The nHitsFitMin ≥ 10, TOF 𝑚2, 𝑛𝜎Proton < 3, and DCA < 3 cm cuts are all correlated with efficiency,
and the uncertainty can be attributed to systematic uncertainty in the embedding procedure. However, the
cuts should be studied independently, as there may be changes to the proton purity of the selected proton
candidates. For our analysis, the proton purity is higher than 95% at all rapidity region, momenta and cen-
trality classes, therefore cut selection did not primarily prioritize proton purity.

Two cuts associated with proton purity are 𝑛𝜎Proton < 3 and DCA < 3cm. Lowering the 𝑛𝜎Proton and
DCA cuts will increase proton purity but decrease the TPC tracking efficiency. To test the effect of changing
the 𝑛𝜎Proton < 3 cut, the analysis was run with 𝑛𝜎Proton < 2, decreasing the number of raw uncorrected
protons, decreasing the efficiency and slightly increasing the purity. Running the analysis with 𝑛𝜎Proton < 2
generated a small increase in the 𝐶4/𝐶2 as seen in Fig. 3.8.5. The 𝑛𝜎Proton < 2 was a relatively small
uncertainty and was not included in the total systematic uncertainty. To study the effect on DCA, the value
was lowered from DCA < 3 cm to DCA < 2.75 cm and DCA < 2.5 cm. As DCA < 3cm is the highest
possible value in our reconstruction procedure, the uncertainty will be assumed to be symmetric around
DCA < 3 cm. As the cut was decreased, all cumulants decreased to lower values, which indicates a lower
tracking efficiency. I assume the DCA uncertainty to be highly correlated with the efficiency uncertainty.
The choice of DCA < 3 cm as the nominal value was to maximize the number of raw protons measured and
decrease the effect of the efficiency correction. Not only does a low DCA cut decrease overall efficiency,
the cut introduces an East/West bias for track selection in the TPC. Due to increased distance from the fixed
target, tracks in the East half of the TPC experience larger DCA values than tracks in the West TPC sector.
By allowing tracks with a higher DCA, I minimize the East/West bias. The effect of DCA on the 𝐶4/𝐶2
signal as a function of FXTMult3 can be seen in Fig. 3.8.5. Fig. 3.8.3 shows the effect of lowering the DCA
for all cumulants. Like most systematic cuts studied, the DCA is most sensitive in the higher order cumulant
𝐶4 and at central events.

An additional study of the DCA variable is performed to check the effect of lambda decays on the
higher order cumulants. Fig. 3.8.4 shows the cumulants and cumulant ratios up to 4th-order. The variation
is comparable to the total systematic uncertainty.
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Figure 3.8.3: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios (𝐶2/𝐶1, 𝐶3/𝐶2 and
𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The difference in cumulants and cumulant ratios
for the DCA < 2.75 cm, DCA < 2.5 cm and 𝑛𝜎Proton < 2 cuts are shown by red, gray and light blue error
bars, respectively.
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Figure 3.8.4: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios (𝐶2/𝐶1, 𝐶3/𝐶2 and
𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The analysis is performed for various DCA cuts.

Figure 3.8.5: Left panel shows the uncertainty from pileup for the unbinned 𝐶4/𝐶2 as a function of
FXTMult3 for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and
the transverse-momentum window 0.4 < 𝑝𝑇 < 2.0 (GeV/𝑐). The right panel shows the same information
with a limited x-axis from 0 < FXTMult3 < 60 and reduced y-axis to show the uncertainty at lower multi-
plicities. The difference in 𝐶4/𝐶2 for the DCA < 2.75 cm, DCA < 2.5 cm and 𝑛𝜎Proton < 2.0 cuts are shown
by red, gray and light blue error bars, respectively.
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The nHitsFit ≥ 10 cut is set to the lowest allowed value in the reconstruction procedure. Previous
analyses have used a larger value to ensure track quality and the removal of broken tracks. However, we
do not see the track quality to decrease with lower nHitsFit cuts and the removal of broken tracks can
be accomplished by requiring nHitsFit/nHitsPossible > 0.51, a less restrictive cut. For the Fixed-Target
regime, the high nHitsFit ≥ 15 or nHitsFit ≥ 25 cuts remove high 𝜂 tracks in the region of interest. Due
to the geometry of the target and the TPC, higher 𝜂 tracks will pass through fewer TPC pad rows. Unlike
the collider setup, the higher 𝜂 ≈ 2 correspond to mid-rapidity particles, our region of interest. To test the
effect of nHitsFit on the analysis, the nHitsFit ≥ 10 is increased to nHitsFit ≥ 12 and nHitsFit ≥ 15. As
nHitsFit ≥ 10 is the lowest allowed value, we assume a symmetric systematic uncertainty.

Figure 3.8.6: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios (𝐶2/𝐶1, 𝐶3/𝐶2 and
𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The difference in cumulants and cumulant ratios
for the nHitsFit≥ 12 and nHitsFit≥ 15 cuts are shown by red and blue error bars, respectively.

The TOF 𝑚2 cut is commonly studied in the cumulant analyses. Varying the TOF 𝑚2 cut did not have a
large effect on the higher order cumulants. The TOF 𝑚2 is varied above and below the standard 0.6 < 𝑚2 <
1.2 (GeV/𝑐2)2 by ±0.05. The 𝐶4/𝐶2 vs. FXTMult3 result is shown in Fig.3.8.9 and the final result for all
cumulants and cumulant ratios are shown in Fig. 3.8.8. In Fig. 3.8.8, the systematic uncertainty from the
TOF 𝑚2 is negligible. Looking at 𝐶4/𝐶2 in 3.8.9, there is a small increase in the systematic uncertainty at
high multiplicities, but remains small with respect to the statistical and other systematic uncertainties.

The efficiency calculation of the TPC detector has considerable uncertainty. The process of embedding
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Figure 3.8.7: Left panel shows the uncertainty from pile up for the unbinned 𝐶4/𝐶2 as a function of
FXTMult3 for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and
the transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The right panel shows the same information
with a limited x-axis from 0 < FXTMult3 < 60 and reduced y-axis to show the uncertainty at lower mul-
tiplicities. The difference in 𝐶4/𝐶2 for the nHitsFit≥ 12 and nHitsFit≥ 15 cuts are shown by red and blue
error bars, respectively.

Figure 3.8.8: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios (𝐶2/𝐶1, 𝐶3/𝐶2 and
𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The difference in cumulants and cumulant ratios
for the mass low and mass high cuts ( mass cuts are varied by ±0.05 from the nominal 0.6 < 𝑚2 < 1.2
(GeV/𝑐2)2 ) are shown by magenta and blue error bars, respectively.
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Figure 3.8.9: Left panel shows the uncertainty from pile up for the unbinned 𝐶4/𝐶2 as a function of
FXTMult3 for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0
and the transverse-momentum window 0.4 < 𝑝T < 2.0. The right panel shows the same information with
a limited x-axis from 0 < FXTMult3 < 60 and reduced y-axis to show the uncertainty at lower multiplici-
ties. The difference in 𝐶4/𝐶2 for the mass low and mass high cuts ( mass cuts are varied by ±0.05 from the
nominal 0.6 < 𝑚2 < 1.2 (GeV/𝑐2)2 ) are shown by magenta and blue error bars, respectively.

Monte Carlo tracks into data and running the track reconstruction process is estimated to have an uncertainty
of 2–5%. Therefore, the cumulants analysis is run with ±5% efficiency to estimate the effect on the higher
order moments. Figure 3.8.10 shows the effect on the CBWC cumulants and cumulant ratios as a function
of average 𝑁part. Unlike previous cuts associated with efficiency, which preferentially affected the central
0-5% cumulant ratios, the broad change in ±5% overall efficiency affects all cumulants and cumulant ratios.
Fig. 3.8.11 shows the effect on the 𝐶4/𝐶2 ratio.

3.8.5 Uncertainty from Centrality Determination

The last systematic uncertainty considered is from the centrality determination. The centrality deter-
mination process is described in Sec. 3.2. Centrality determination is limited by the finite bin width of the
multiplicity distribution. To estimate how this affects the cumulants, the centrality determination is varied
by ±1 bin and the difference is taken as the systematic uncertainty. This uncertainty is negligible for the
central events but considerable in the peripheral events. Fig. 3.8.12 shows the effect on the cumulants and
ratios.
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Figure 3.8.10: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios (𝐶2/𝐶1, 𝐶3/𝐶2 and
𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and the
transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The difference in cumulants and cumulant ratios
for an increased and decreased efficiency (±5%) are shown by orange and green error bars, respectively.

Figure 3.8.11: Left panel shows the uncertainty from pile up for the unbinned 𝐶4/𝐶2 as a function of
FXTMult3 for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window −0.5 < 𝑦 < 0 and
the transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The right panel shows the same information
with a limited x-axis from FXTMult3 0 to 60 and reduced y-axis to show the uncertainty at lower multi-
plicities. The difference in 𝐶4/𝐶2 for an increased and decreased efficiency (±5%) are shown by orange and
green error bars, respectively.
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Figure 3.8.12: Panels show the proton cumulants (up to 𝐶4) and proton cumulants ratios
(𝐶2/𝐶1, 𝐶3/𝐶2𝑎𝑛𝑑𝐶4/𝐶2) for the fixed-target √𝑠NN = 3GeV Au+Au collisions for the rapidity window
−0.5 < 𝑦 < 0 and the transverse-momentum window 0.4 < 𝑝T < 2.0 (GeV/𝑐). The difference in cumulants
and cumulant ratios for a change in centrality by ±1 FXTMult3 bin are shown by red (−1) and blue (+1)
error bars.

3.8.6 Summary of Systematic Uncertainty

An overview of the systematic uncertainty for 𝐶4/𝐶2 is shown in Fig.3.8.13. The uncertainty is di-
vided into two categories, the uncertainty from pile up determination and from efficiency related systematic
variables. The uncertainty from the two sources are added in quadrature, where the uncertainty to 𝐶4/𝐶2 is
±0.30 and ±0.27 from pile up and efficiency, respectively. A table is included (Tab.3.5) to describe each
systematic cut and the effect on the 𝐶4/𝐶2 uncertainty.
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Figure 3.8.13: Left panel shows the systematic uncertainty from pile up determination for 𝐶4/𝐶2. Right
panel shows the systematic uncertainty from efficiency and related cuts for 𝐶4/𝐶2.
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Chapter 4

Results and Discussion

In this chapter I show results of higher-order cumulants of proton multiplicity distributions from STAR
fixed-target data. Model calculations from UrQMD hydrodynamics model are also shown and compared
with experimental measurements. Physics implications are discussed with respect to centrality, acceptance
and collision energy dependence.

4.1 Event-by-event Proton Multiplicity Distribution
Figure 4.1.1 shows detector efficiency uncorrected event-by-event proton multiplicity distributions for

0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50% and 50-60% centrality classes in Au+Au collisions at
√𝑠NN = 3GeV. Protons are identified by combining TPC and TOF detectors within kinematic acceptance
−0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The distributions are normalized.

4.2 Centrality Dependence
Figure 4.2.1 show cumulants and cumulant ratios up to 6th-order of proton multiplicity distributions as

a function of the average of number of participants ⟨𝑁part⟩ in Au+Au collisions at √𝑠NN = 3GeV within
kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. Experimental data are corrected for
detector efficiency and pileup effect, and are shown with black squares for different centrality classes which
are 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, and 50-60%. Black and grey bars indicate statistical
and systematical uncertainties, respectively. The gold bands are calculations from UrQMD model within
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Figure 4.1.1: Event-by-event raw proton multiplicity distributions for 0-5%, 5-10%, 10-20%, 20-30%, 30-
40%, 40-50% and 50-60% centrality classes in Au+Au collisions at √𝑠NN = 3GeV. The distributions are
normalized.

the same kinematic acceptance used for data. CBWC are applied for both data and UrQMD calculations.
It is seen from Fig. 4.2.1 that lower order cumulants (𝐶𝑖, 𝑖 = 1, 2) increase with the increase of 𝑁part from
peripheral to central collisions. The higher order cumulants (𝐶𝑖, 𝑖 ≥ 3) reach a maximum at ⟨𝑁part⟩ ∼ 200
then decrease rapidly. The non-linear scaling of 𝐶3 and 𝐶4 with respect to 𝑁part were not seen in BES-I net-
proton cumulants measurements [57, 74]. This may be due to the effect of volume fluctuation. All cumulant
ratios are above unity in peripheral and mid-central collisions except in most central collisions. 𝐶2/𝐶1 is
above unity for all centrality which is not observed for proton in high energy measurements of experimental
data in collider mode. The ratio 𝐶4/𝐶2 in most central collisions is -0.845 ± 0.086 (stat) ± 0.818 (sys.)
which is very well reproduced by UrQMD calculation.

Comparing data with UrQMD calculation it is seen that lower order cumulants (𝐶1 and 𝐶2) of data are
well reproduced by UrQMD, and for higher order cumulants (≥ 𝐶3), the centrality dependence of data are
qualitatively reproduced. The negative 𝐶4 and 𝐶4/𝐶2 in most central collisions are also seen in UrQMD
calculation. Recall the calculation shown in Fig. 3.6.2 of UrQMD using 𝑁part as centrality reference, we
observed a positive 𝐶4/𝐶2 for most central collisions. It might suggest that the negative sign for 𝐶4 shown
in data is due to volume fluctuation. 5th- and 6th-order cumulants and ratios show large systematic uncer-
tainty which is mainly contributed by the DCA cut. Figure 4.2.2 shows centrality dependence of correlation
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Figure 4.2.1: Centrality dependence of cumulants and cumulant ratios of proton multiplicity distributions
up to 6th-order in Au+Au collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and
0.4 < 𝑝T < 2.0 GeV/𝑐. Data are shown with black squares while UrQMD results are shown with gold band.
Statistical and systematical uncertainty are shown with black and grey bars, respectively.

74



CHAPTER 4. RESULTS AND DISCUSSION 博士学位论文

DOCTORAL DISSERTATION

0 100 200 300
20−

10−

0

10
0 100 200 300

0

5

10

150 100 200 300
0

10

20

30

0 100 200 300
2000−

0

2000

40000 100 200 300

200−

0

200

0 100 200 300

40−

20−

0

20

0 100 200 300

1−

0

1
0 100 200 300

500−

0

500

3−10×
0 100 200 300

0.0

0.2

0.4

0.6

0 100 200 300
50−

0

50

100

1500 100 200 300

10−

0

10

>
part

Number of Participating Nucleons <N

C
or

re
la

tio
n 

F
un

ct
io

ns

C
or

re
la

tio
n 

F
un

ct
io

n 
R

at
io

s

1κ

2κ

3κ

4κ

5κ

6κ

1κ/2κ

1κ/3κ

1κ/4κ

1κ/5κ

1κ/6κ

 = 3.0 GeVNNsAu + Au, 
Proton, -0.5 < y < 0

 < 2.0 (GeV/c)
T

0.4 < p

Data

UrQMD

Figure 4.2.2: Centrality dependence of correlation and correlation function ratios of proton multiplicity
distributions up to 6th-order in Au+Au collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 <
𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. Data are shown with black squares while UrQMD results are shown with
gold band. Statistical and systematical uncertainty are shown with black and grey bars, respectively.
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Figure 4.2.3: Centrality dependence of cumulants and cumulant ratios up to 6th-order in Au+Au collisions
at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. The black squares
are results without volume correction while red circles and blue triangles represent results with volume
correction using Glauber and UrQMD model, respectively.
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functions and correlation function ratios with same acceptance from Fig. 4.2.1. We can see an positive 𝜅2
for all centrality classes. The large values of correlation functions are also seen in UrQMD calculation (gold
bands) and the trends in data are qualitatively reproduced.
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Figure 4.2.4: Centrality dependence of correlation functions and correlation function ratios up to 6th-order in
Au+Au collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐.
The black squares are results without volume correction while red circles and blue triangles represent results
with volume correction using Glauber and UrQMD model, respectively.

Figures 4.2.3 and 4.2.4 show centrality dependence of cumulants and correlation functions of 3GeV
data within kinematic acceptance −0.5 < 𝑦 < 0 and 0.4 < 𝑝T < 2.0 GeV/𝑐. In these figures I show the
data with the volume fluctuation correction. The blacks squares are without correction which are same data
points shown in Figs. 4.2.1 and 4.2.2. The red circles and blue triangles are with volume correction using
𝑁part distributions from Glauber and UrQMD model, respectively. As is shown in Sec. 3.6.2 according to
the assumption of the volume fluctuation correction, 𝐶1 is not modified. From 𝐶2 we begin to see some
changes which are large in mid central centrality (⟨𝑁part⟩ ≈ 150-250) small in peripheral and most central
centrality. For 𝐶3 or higher-order cumulants and ratios, results with or without volume fluctuation correction
are consistent within uncertainty. The results with volume correction show strong model dependence on
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𝑁part which is due to different mapping of charged particle reference multiplicity and number of participants
in UrQMD or Glauber model. But one can see for higher order ratios 𝐶3/𝐶2, 𝐶4/𝐶2, 𝐶5/𝐶1 and 𝐶6/𝐶2 the
effect is small in most central centrality class.

4.3 Rapidity (y) Dependence
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Figure 4.3.1: Rapidity dependence of cumulants and cumulant ratios of proton multiplicity distributions
ratios up to 6th order in top 5% central and 50-60% peripheral Au+Au collisions at √𝑠NN = 3GeV within
kinematic acceptance 0.4 < 𝑝T < 2.0 GeV/𝑐. The lower rapidity cut is varied from -0.1 to -0.9. Data are
shownwith black squareswhile UrQMDcalculations are shownwith gold bands. Statistical and systematical
uncertainty are shown with black and grey bars, respectively.

Figure 4.3.1 shows rapidity dependence of cumulants and their ratios up to 6th-order in top 5% central
and 50-60% peripheral Au+Au collisions at √𝑠NN = 3GeV within kinematic acceptance 0.4 < 𝑝T < 2.0
GeV/𝑐. The black squares and blue blue triangles are for data of 0-5% and 50-60% centrality, respectively.
Similarly, the gold and blue lines are for UrQMD calculations of 0-5% and 50-60% centrality, respectively.
The Black and grey bars are statistical and systematical uncertainties, respectively. The x axis is the lower
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cut on rapidity which changes from -0.1 to -0.9 means rapidity window are varied from −0.1 < 𝑦 < 0 to
−0.9 < 𝑦 < 0.

With the increase of rapidity window it is seen that cumulants and ratios for both 5% and 50-60%
centrality increase while higher order ones decrease early. It is seen at −0.1 < 𝑦 < 0 that all cumulant
ratios are consistent with unity (Poisson baseline) which means that the acceptance compared to system
correlation length is too small to measure dynamical fluctuation so that the measurement falls to Poisson
statistics which has no correlation at all. 𝐶2/𝐶1 is above unity for most central 5% collisions for each rapidity
window which might means there is volume fluctuation effect but it looks the volume fluctuation effect is
small for higher-order ratios of 𝐶4/𝐶2, 𝐶5/𝐶1 and 𝐶6/𝐶2. It is worth noting that 𝐶4/𝐶2 reaches a minimum
when Rapiditymin ≈ −0.6 then goes back to unity when Rapiditymin ≈ −0.9 with large uncertainty though.
𝐶4/𝐶2 in UrQMD calculation also shows a similar convergent trend. In general, the rapidity dependence of
cumulants and their ratios are qualitatively reproduced by UrQMD calculations.
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Figure 4.3.2: Rapidity dependence of correlation and correlation function ratios of proton multiplicity dis-
tributions up to 6th-order in top 5% central and 50-60% peripheral Au+Au collisions at √𝑠NN = 3GeV
within kinematic acceptance 0.4 < 𝑝T < 2.0 GeV/𝑐. The lower rapidity cut is varied from -0.1 to -0.9. Data
are shown with black squares while UrQMD results are shown with gold band. Statistical and systematical
uncertainty are shown with black and grey bars, respectively.
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Figure 4.3.2 shows rapidity dependence of correlation functions and their normalized ratios (𝜅𝑛/𝜅1) up
to 6th-order in most central 5% and 50-60% peripheral Au+Au collisions at √𝑠NN = 3GeVwithin kinematic
acceptance 0.4 < 𝑝T < 2.0 GeV/𝑐. It is seen that in data two-particle correlation functions (𝜅2) for are
positive for both top 5% and peripheral centrality from each rapidity window. 𝜅2 reaches a maximum around
when Rapiditymin ≈ 0.6 then decreases when further decreasing Rapiditymin. 𝜅2 from UrQMD model also
shows a maximum Rapiditymin ≈ 0.5 but decreases to negative when further enlarging rapidity window.

4.4 Transverse Momentum (𝑝T) Dependence
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Figure 4.4.1: Transverse momentum (𝑝T) dependence of cumulants and their ratios of proton multiplicity
distributions up to 6th order in top 5% central and 50-60% peripheral Au+Au collisions at √𝑠NN = 3GeV
within kinematic acceptance −0.5 < 𝑦 < 0. The higher 𝑝T cut is varied from 0.8 to 2.0 GeV/𝑐. Data are
shown with black squares while UrQMD results are shown with gold band. Statistical and systematical
uncertainty are shown with black and grey bars, respectively.

Figure 4.4.1 and Fig. 4.4.2 show transverse momentum (𝑝T) dependence of cumulants and correlation
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Figure 4.4.2: Transverse momentum (𝑝T) dependence of correlation function and their normalized ratios of
proton multiplicity distributions up to 6th-order in top 5% central and 50-60% peripheral Au+Au collisions
at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0. The higher 𝑝T cut is varied from 0.8 to 2.0
GeV/𝑐. Data are shown with black squares while UrQMD results are shown with gold band. Statistical and
systematical uncertainty are shown with black and grey bars, respectively.
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functions of protonmultiplicity distributions up to 6th-order in top 5% central and 50-60% peripheral Au+Au
collisions at √𝑠NN = 3GeV within kinematic acceptance −0.5 < 𝑦 < 0. The x axis is a lower cut on 𝑝T
which varies from 0.8 to 2.0 GeV/𝑐. Cumulants (𝐶𝑖, 𝑖 ≤ 3) increase with increasing 𝑝T window while
cumulants (𝐶𝑖, 𝑖 ≥ 4) reach a maximum then decrease. Trends of cumulants are reproduced by UrQMD
calculation. 𝐶2/𝐶1 is above unity and increases with increasing 𝑝T window, while 𝐶2/𝐶1 is consistent with
unity for all 𝑝T window. 𝐶3/𝐶2 of data is consistent with unity while UrQMD calculation is below unity
and show a decreasing trend with increasing 𝑝T window. 𝐶4/𝐶2 is consistent with unity within uncertainty
when 𝑝max

T = 0.8 and decreases to -1.

4.5 Collision Energy Dependence

New proton results from the 3GeV collisions are from rapidity window −0.5 < 𝑦 < 0 and 𝑝T window
0.4 < 𝑝T < 2.0 GeV/𝑐 and are shown with filled squares. The energy dependence results from UrQMD [58,
59] and hydrodynamic [85] calculations are shown with gold band and red dashed line, respectively. In the
hydrodynamic calculation, its evolution is made with the open-source code MUSIC v3.0 [86]. The initial
condition is taken from Ref. [87] and the particlization is given by the Cooper-Frye formula [88] with non-
ideal hadron resonance gas model [89]. At the grand canonical limit, with including both effects of excluded
volume and global baryon number conservation, the net-proton cumulants are evaluated on the Cooper-Frye
hypersurface. One may find more details of the model calculations in Ref. [85]. Unlike the commonly
used transport model approach, here all calculations, starting from initial condition to hydro-evolution to
hadronlization, are all done with the manner of averaged ensembles.

The top panels plots (a) and (b) of Fig. 4.5.1, by definition, are identical(Eq. 1.5.19). Above 7GeV,
all proton and anti-proton 𝜅2/𝜅1 ratios are below zero, and they converge to similar values at top RHIC
energy. As the energy decreases, the proton ratio is suppressed and the anti-proton ratio increases slightly
and approaches the Poisson limit. The difference becomes largest at 7.7GeV. The new proton data from
3GeV Au+Au collisions, shown with filled squares, are found to be positive. The HADES experiment
recently reported the measurements of proton (|𝑦| < 0.4, 0.2 < 𝑝T < 2 GeV/𝑐) high moments from 2.4 GeV
Au+Au top 10% collisions [90] and the value of the 𝜅2/𝜅1 ratio is much larger than 1.

In the energy range 7.7 – 200 GeV, the UrQMD results on the second order ratios show a similar energy
dependence although the exact data points are not reproduced. At 3GeV, within the same acceptance, the
UrQMD model calculation on 𝜅2/𝜅1 is also positive (blue cross) and consistent with data. Hydrodynamic
model calculations [85], on the other hand, predict negative second order ratios in the entire energy range
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Figure 4.5.1: Collision energy dependence of reduced cumulants ratios and correlation function ratios of
(anti)proton multiplicity distributions up to 4th-order in Au+Au collisions within acceptance cut 0.4 < 𝑝T <
2.0 GeV/𝑐. Results from data with rapidity cut |𝑦| < 0.5 are shown with black squares for proton, triangles
for antiproton. Results from data and UrQMD model with rapidity cut −0.5 < 𝑦 < 0 are shown with
cyan filled squares and blue crosses, respectively. An additional calculation in UrQMD model with impact
parameter b < 3 fm is shown with open cross. UrQMD calculations with rapidity cut |𝑦| < 0.5 are shown
with gold and pink bands for proton and antiproton, respectively. A hydrodynamic calculation is shown with
red dashed line for |𝑦| < 0.5, red star for −0.5 < 𝑦 < 0. Statistical and systematical uncertainty are shown
with black and grey bars, respectively.
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3 – 200GeV, see red dashed lines. By limiting the calculation to half of the nominal rapidity window
−0.5 < 𝑦 < 0, the ratio remains negative with a reduced magnitude, see open blue crosses.

As discussed in the previous section, the collision centrality is determined using a similar technique
for both UrQMD and data multiplicity distributions. Thus, the sizable volume fluctuations are expected in
the UrQMD 3GeV calculations. In contrast, the hydrodynamic calculations are performed within a fixed
volume, but include baryon number conservation and a repulsive volume. In Fig. 4.5.1, the hydrodynamic
model predicts negative values for all reduced cumulant ratios [85] (see dashed red lines and open stars).
Within the same rapidity window (−0.5 < 𝑦 < 0), the hydro model results (red open stars) are comparable
to the UrQMDmodel calculations with a fixed impact parameter 𝑏 < 3 fm (blue crosses) which corresponds
to the top 5% Au+Au central collisions for 𝜅2/𝜅1, 𝜅3/𝜅1, and 𝜅4/𝜅1. Note that the hydrodynamic calculations
of cumulants of net-protons are discussed in Fig. 2 of Ref. [85] for the top 5% central Au+Au collisions over
the energy range 7.7 – 200GeV. The trend of the energy dependence in experimental data is well reproduced
by the model calculations [85].

At higher energies, the hydrodynamic and UrQMDmodels appear to agree with each other. In general,
it is expected that the effects from volume fluctuation are diminished at higher energy collisions. This
could be due to larger multiplicities and the stronger correlation between the reference multiplicity and the
initial volume. In addition, the difference between model calculations with and without volume fluctuation
corrections is small for higher order reduced cumulants and correlation function ratios due to the cancellation
among different orders (Eq. 1.5.19). For example, in panel (e) and (f) in the figure, data points and model
results are within the 1𝜎 range. Comparing the reduced cumulant ratios from different orders, one might also
conclude that the volume fluctuation in the second order dominates the initial fluctuation in higher orders in
low energy nuclear collisions.

In panel (d), the ratios of third order correlation functions are close to zero except for the 3GeV data.
On the other hand, the reduced cumulant ratios in panel (c) show a clear energy dependence similar to that
in the top panels. These results imply that the observed energy dependence primarily stems from the second
order cumulants and correlation functions. At 3GeV, the 𝜅3/𝜅1 ratio is well reproduced by the UrQMD
calculation. Conversely, the model fails to predict the sign of the reduced cumulant ratio 𝐶3/𝐶1 − 1. In
addition, at this energy, the hydrodynamic results show opposite signs of the data in both 𝐶3/𝐶1 − 1 and
𝜅3/𝜅1.

The fourth order results are shown in the bottom panels of Fig. 4.5.1. At collision energy below 20GeV,
the proton 𝜅4/𝜅1 data show hints of non-zero deviations but suffer large statistical uncertainties, see panel
(f). At 3GeV, the proton data is below zero although systematic uncertainty is sizable. Overall, UrQMD
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calculations are consistent with data. The situation for the reduced cumulant ratio is similar.
In summary, it appears that the second order correlations dominate the energy dependence of the higher

order ratios of reduced cumulants and correlation functions. Volume fluctuations are suppressed either
in high energy collisions where charged particle multiplicity is large or in higher order correlations due
to cancellations. The results from the 3GeV breaks the systematic energy dependent trends observed in
higher energy collisions. This is partly due to the effect of volume fluctuations but also due to that hadronic
interactions are dominant in such low energy collisions.
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Figure 4.5.2: Collision energy dependence of cumulants ratios up to 4th-order in Au+Au collisions within
kinematic acceptance cut 0.4 < 𝑝T < 2.0 GeV/𝑐. Results from data and Ur within |𝑦| < 0.5 are shown
with red filled circles for netproton, black squares for proton. Results from data and UrQMD model at with
rapidity cut −0.5 < 𝑦 < 0 are shown with filled squares and blue crosses, respectively. An additional cal-
culation in UrQMD model with impact parameter b < 3 fm is shown with open cross. UrQMD calculations
with rapidity cut |𝑦| < 0.5 are shown with gold and pink bands for proton and antiproton, respectively. A
hydrodynamic calculation is shown with red dashed line for |𝑦| < 0.5, red star for −0.5 < 𝑦 < 0. Statistical
and systematical uncertainty are shown with black and grey bars, respectively.

At first order, taking the ratio of cumulants cancels the effect of volume but not the fluctuations in
volume. Fig. 4.5.2 depicts the collision energy dependence of the cumulant ratios from 0-5% central (top
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panels) and 50-60% peripheral (bottom panels) collisions. The new result of protons from 3GeV, shown
with filled squares, is compared to that of protons (open squares) and net-protons (filled circles) from higher
energy (√𝑠NN = 7.7 – 200GeV) collisions.

Transport model UrQMD [58, 59] results of both net-protons (from |𝑦| < 0.5) and protons (from 3GeV
within rapidity window −0.5 < 𝑦 < 0) are shown with a gold band and blue cross, respectively. While the
net-proton ratios show a clear energy dependence, the proton 𝐶2/𝐶1 and 𝐶3/𝐶2 ratios are relatively flat and
around unity as a function of collision energy except for the 3GeV data. This is in contrast to the net-proton
ratios which display a clear energy dependence. The new proton data from 3GeV does not follow this trend
in the most central collisions. Notably, both proton (open squares) and net-proton (filled circles) cumulant
ratios at collision energies below 20 GeV converge. This implies that at high net-baryon region, the anti-
proton production becomes negligible. At the center of mass energy of 2.4 GeV, HADES reported the values
for proton cumulant ratios: 𝐶3/𝐶2 = -1.63 ± 0.09 (stat) ± 0.34 (sys) and 𝐶4/𝐶2 = 0.15 ± 0.9 (stat) ± 1.4
(sys) from kinematic acceptance |𝑦| < 0.4, 0.4 < 𝑝𝑇 < 1.6 GeV/𝑐 [90]. While the value of 𝐶4/𝐶2 from
the HADES experiment is consistent with the 3GeV new data, the sign of 𝐶3/𝐶2 is opposite to what we
observed here.

Except the 𝐶3/𝐶2 ratio from central collisions, the transport model UrQMD [58, 59] results reproduce
the energy dependence trend well for both proton and net-proton, see green and gold bands in the figure.
For the peripheral 50-60% collisions, the 𝐶4/𝐶2 ratio from 3GeV is larger than that from higher energy
collisions, by a factor of five. A rapid increase in the energy dependence seems confirmed by the UrQMD
model calculations, see both the blue cross and gold band in the figure. In the most central collisions at
3GeV, unlike all higher energy collisions, the value of 𝐶4/𝐶2 is negative. The UrQMD model calculations,
again, reproduced the trend well, due to baryon number conservation, the 𝐶4/𝐶2 is dramatically suppressed
in the high baryon density region.

Hydrodynamic calculations are shown with red dashed lines in Fig. 4.5.2 for the most central 5%
Au+Au collisions. The ratios of 𝐶2/𝐶1, 𝐶3/𝐶2, and 𝐶4/𝐶2 in Hydrodynamic calculations are all below
unity. Interestingly, the UrQMD result with a fixed impact parameter are also suppressed, see open blue
cross. Qualitatively, the results from the fixed volume UrQMD follows that of the Hydro calculations with
canonical ensemble.

Initial participant fluctuations can be seen in the ratios for all peripheral collisions and only 𝐶2/𝐶1 in
central collisions. Due to cancellation [82], higher order ratios 𝐶3/𝐶2 and 𝐶4/𝐶2 are all suppressed to below
unity. In the case of absent or minimal volume fluctuations, calculations of the hydrodynamic model and
the UrQMD model with fixed impact parameter are consistent.
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At vanishing net-baryon density, first principle Lattice QCD calculations have predicted a positive value
of 𝐶4/𝐶2 from the formation of de-confined QCD matter [91]. The fact that the negative 𝐶4/𝐶2 value in the
most central Au+Au collisions at 3GeV are reproduced by the hadronic transport UrQMD model although
𝐶3/𝐶2 is over-predicted, implies that the system is dominant by hadronic interactions. This conclusion is
also consistent with that from the measurements of collectivity of light hadrons [92] as well as the strange
hadron production [93] at the same collision energy.
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Chapter 5

Summary and Outlook

5.1 Summary
In summary, we report a systematic measurement of cumulants and correlation functions of proton

multiplicities up to the 6th-order from Au+Au collisions at √𝑠NN = 3GeV. The data was collected with the
STAR fixed-target mode in year 2018 at RHIC. The analysis includes the centrality, acceptance and energy
dependence of these fluctuation observables for proton multiplicities. Other important effects which are
relevant to low energy fixed-target collisions such as events pileup and volume fluctuation are also discussed.

The protons are identified using the STAR TPC and TOF with greater than 95% purity. The centrality
selection is based on pion and kaon multiplicities in the full acceptance of the TPC. The proton tracks are
corrected for tracking inefficiencies using a binomial response function. The cumulant values are corrected
for pileup contamination. The event-averaged total pileup fraction is determined to be (0.46 ± 0.09)%.

Due to a weak correlation between the measured reference multiplicity and the initial number of par-
ticipants, a considerable effect from the volume fluctuations is expected. The effects can be suppressed by
implementing a model dependent correction procedure [82], however, the results are highly dependent on
the choice of model that provides inputs for the correction procedure. Interestingly, higher order cumulant
ratios 𝐶4/𝐶2, 𝐶5/𝐶1, and 𝐶6/𝐶2 in most central events appear least affected by volume fluctuations in the
3GeV collisions.

The proton cumulants and their ratios show a rapidity, transverse momentum, and centrality depen-
dence. The UrQMD model reproduces the trends well, however, does not agree within uncertainties. Com-
paring with data from higher energy collisions, the √𝑠NN = 3GeV cumulant ratios of 𝐶2/𝐶1, 𝐶3/𝐶2 and
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𝐶4/𝐶2, except 𝐶3/𝐶2 in central collisions, UrQMD reproduced all energy dependence. This is attributed to
effects from volume fluctuations and hadronic interactions. On the other hand, the data and results of both
UrQMD and hydrodynamic models of 𝐶4/𝐶2 in the most central collisions are consistent which signals the
effects of baryon number conservation and an energy regime dominated by hadronic interactions. Therefore,
the QCD critical point, if discovered in heavy ion collisions, could only exist at energies higher than 3GeV.

New data sets have been collected during the second phase of the RHIC beam energy scan program
for Au+Au collisions at √𝑠NN = 3 – 19.6GeV. The data sets will have extended kinematic coverage and
higher statistics. This will allow analyzers to reduce the statistical uncertainties dramatically and expand
the systematic analysis of both 𝑝𝑇 and rapidity dependence to wider regions. These studies will be crucial
in exploring the QCD phase structure at high baryon density region and locating the illusive critical point.

5.2 Outlook

Figure 5.2.1: The upgrades of the STAR detector, iTPC, eTOF and EPD.

From the year 2019 to 2021 RHIC finished data-taking of the beam energy scan program phase II. The
collected datasets are 10 – 20 times larger than the statistics from BES-I. The large datasets will allow us
to perform high-precision measurements on higher-order cumulants even up to 8th or 10th-order. Besides
that, in the BES-II STAR upgraded three sub-detectors which are inner TPC detector (iTPC), End Cap TOF
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BES-II / BES-I
√𝑠NN (GeV) Statistics (Million)

19.6 400 / 36
17.3 250
14.5 300 / 20
11.5 230 / 12
9.1 160
7.7 100 / 4

13.7 (FXT) 50
11.5 (FXT) 50
9.2 (FXT) 50
7.7 (FXT) 160
6.2 (FXT) 120
5.2 (FXT) 100
4.5 (FXT) 100
3.9 (FXT) 120
3.5 (FXT) 120
3.2 (FXT) 200
3 (FXT) 2000

Table 5.1: Statistics of Au+Au collisions at √𝑠NN = 3 – 19.6GeV of RHIC beam energy scan program.
The BES-II combines both collider and fixed-target configurations of the STAR experiment in order to
investigate the nature of the phase transition. The blue and black indicate statistics collected from BES-II
and BES-I, respectively.
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Figure 5.2.2: Energy dependence of 𝜅𝜎2 of proton (open squares) and net-proton (red circles) multiplicity
distributions in most central 5% centrality class for Au+Au collisions at √𝑠NN = 7.7 – 200GeV. The yellow
shaded area indicates the energy region covered by various experiments, CEE, HADES at GSI, CBM at
FAIR, NICA at Russia and STAR fixed-target experiment at RHIC.
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Figure 5.2.3: Proton phase space in Au+Au collisions at √𝑠NN = 19.6GeV from RHIC-STAR. Protons
are selected using TPC PID cut, |𝑛𝜎𝑝| < 2. The top panel is using data from Run 11 while the bottom
panel is from Run 19. The red lines in both panels indicate TPC coverage for data from Run 11 and Run 19,
respectively.92
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Figure 5.2.4: Proton phase space in Au+Au collisions at √𝑠NN = 3.5, 3.9, and 4.5GeV by STAR fixed-
target experiment. The protons are selected using TPC PID cut, |𝑛𝜎𝑝| < 3. The blue dashed boxes indicate
acceptance window for mid-rapidity (|𝑦| < 0.5) and 0.4 < 𝑝T < 2.0 GeV/𝑐. To ensure high-purity proton
samples, above total momentum in laboratory frame of 2.5GeV/𝑐, the TPC, TOF, and eTOF PID are com-
bined to identify protons and below 2 GeV/𝑐 only TPC PID is used. For 3GeV from Run 18 that a cut on
momentum 2GeV/𝑐 in laboratory frame is used for TPC, TOF, and eTOF PID.
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(eTOF) and Event Plane Detector (EPD).
As is shown in Fig. 5.2.1 the iTPC enlarges TPC rapidity coverage up-to |𝜂| < 1.5 and has better

dE/dx resolution. Fig. 5.2.3 shows proton phase space in Au+Au collisions at √𝑠NN = 19.6GeV in terms
of rapidity (y) and transverse-momentum (𝑝T). The top panel is from Run 11 while the bottom panel is
from Run 19 of BES-II. It is seen that with the upgrade of iTPC the rapidity dependence of higher-order
cumulants can be scanned up to 0.8. The eTOF enables the particle identification at forward rapidity −1.6 <
𝜂 < 1.0. The new installed EPD detectors provide capability to measure charged particles at forward rapidity
2.1 < |𝜂| < 5.1 which may be used to define collision centrality. Fig. 5.2.4 shows the proton phase space in
Au+Au collisions at √𝑠NN = 3.5, 3.9, and 4.5GeV/𝑐 from STAR fixed-target experiments in the year 2019
and 2020. In the plot, protons are selected using TPC PID. It can be seen that with the upgrades of iTPC
and eTOF up to 4.5GeV it is still hopeful to measure proton cumulants at mid-rapidity.

The statistics of BES-II program can be seen in Tab. 5.1 where the collision energy varies from 3 up to
19.6GeV. Fig. 5.2.2 shows the energy dependence of 𝜅𝜎2 of proton and net-proton multiplicity distributions
in most central 5%Au+Au collisions at √𝑠NN = 7.7 – 200GeV. The yellow shaded area indicates the energy
range covered by future experiments like CEE (fixed-target experiment), CBM (fixed-target experiment,
√𝑠NN = 2 – 5 GeV), NICA (MPD: collider, √𝑠NN = 4 – 11GeV). The fruitful datasets will allow one
to explore QCD phase diagram in high baryon density region, which is the most important region for the
search of the illusive QCD critical point.

In this analysis, the initial volume fluctuation effect is discussed and a volume fluctuation correction
method is tested in both data and UrQMD model. While as is shown in corresponding chapter this effect is
still not well taken care of. In future analysis we will work on this effect for possible solutions. For example
if we know precisely the number of participating nucleons (or neutrons) of each collision event then we can
use it as a reference for collision centrality. Then the volume fluctuation effect is mostly reduced. It is also
pointed in Refs. [94, 95, 96, 97] that strongly intensive cumulants can be used to reduce volume fluctuation
effect. The application on the current data still needs more work.
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Appendix

Statistical Uncertainty of Efficiency Uncorrected Cumulants

Below we show formulas for statistical uncertainty of detector efficiency uncorrected cumulants and
correlation functions up to 8th order. The ”Var” indicates variance. 𝜇, ⟨𝑁⟩ and 𝑛 represent central mo-
ment, mean value and number of events. The formulas given in this section are used to evaluate statistical
uncertainty for cumulants and correlation functions given in Sec. 1.5.1 and Sec. 1.5.2.

Var(𝐶2) = (−𝜇2
2 + 𝜇4)/𝑛,

Var(𝐶3) = (9𝜇3
2 − 6𝜇2𝜇4 − 𝜇2

3 + 𝜇6)/𝑛,

Var(𝐶4) = (−36𝜇4
2 + 48𝜇2

2𝜇4 + 64𝜇2𝜇2
3 − 12𝜇2𝜇6 − 8𝜇3𝜇5 − 𝜇2

4 + 𝜇8)/𝑛,

Var(𝐶5) = (𝜇10 + 900𝜇5
2 − 900𝜇3
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2𝜇2
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2𝜇6 + 240𝜇2𝜇3𝜇5

+ 125𝜇2𝜇2
4 − 20𝜇2𝜇8 + 200𝜇2

3𝜇4 − 20𝜇3𝜇7 − 10𝜇4𝜇6 − 𝜇2
5)/𝑛,
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+ 1624𝜇12𝜇2
2 − 140𝜇12𝜇4 − 112𝜇13𝜇3 − 56𝜇14𝜇2 + 𝜇16 − 6350400𝜇8

2 + 12700800𝜇6
2𝜇4

+ 59270400𝜇5
2𝜇2

3 − 2399040𝜇5
2𝜇6 − 15523200𝜇4

2𝜇3𝜇5 − 6174000𝜇4
2𝜇2

4 + 322560𝜇4
2𝜇8

− 35280000𝜇3
2𝜇2

3𝜇4 + 1626240𝜇3
2𝜇3𝜇7 + 1340640𝜇3

2𝜇4𝜇6 + 677376𝜇3
2𝜇2

5 − 8467200𝜇2
2𝜇4

3

+ 2759680𝜇2
2𝜇2

3𝜇6 + 5597760𝜇2
2𝜇3𝜇4𝜇5 − 119840𝜇2

2𝜇3𝜇9 + 882000𝜇2
2𝜇3

4 − 108360𝜇2
2𝜇4𝜇8

− 77952𝜇2
2𝜇5𝜇7 − 26656𝜇2

2𝜇2
6 + 2007040𝜇2𝜇3

3𝜇5 + 3684800𝜇2𝜇2
3𝜇2

4 − 160160𝜇2𝜇2
3𝜇8

− 322560𝜇2𝜇3𝜇4𝜇7 − 257152𝜇2𝜇3𝜇5𝜇6 − 172480𝜇2𝜇2
4𝜇6 − 178752𝜇2𝜇4𝜇2

5 + 3808𝜇2𝜇5𝜇9

+ 1680𝜇2𝜇6𝜇8 + 512𝜇2𝜇2
7 + 940800𝜇4

3𝜇4 − 71680𝜇3
3𝜇7 − 203840𝜇2

3𝜇4𝜇6 − 75264𝜇2
3𝜇2

5

− 156800𝜇3𝜇2
4𝜇5 + 8960𝜇3𝜇4𝜇9 + 6496𝜇3𝜇5𝜇8 + 4480𝜇3𝜇6𝜇7 − 4900𝜇4

4 + 5040𝜇2
4𝜇8

+ 9856𝜇4𝜇5𝜇7 + 4704𝜇4𝜇2
6 + 6272𝜇2

5𝜇6 − 16𝜇7𝜇9 − 𝜇2
8)/𝑛,

Var(𝐶2/𝐶1) = (−
𝜇2

2
⟨𝑁⟩2 + 𝜇4

⟨𝑁⟩2 − 2𝜇2𝜇3
⟨𝑁⟩3 +

𝜇3
2

⟨𝑁⟩4 )/𝑛,

Var(𝐶3/𝐶2) = (9𝜇2 − 6𝜇4
𝜇2

+
6𝜇2

3

𝜇2
2

+ 𝜇6

𝜇2
2

− 2𝜇3𝜇5

𝜇3
2

+
𝜇2

3𝜇4

𝜇4
2

)/𝑛,

Var(𝐶4/𝐶2) = (−9𝜇2
2 + 9𝜇4 +

40𝜇2
3

𝜇2
− 6𝜇6

𝜇2
− 8𝜇3𝜇5

𝜇2
2

+
6𝜇2

4

𝜇2
2

+ 𝜇8

𝜇2
2

+
8𝜇2

3𝜇4

𝜇3
2

− 2𝜇4𝜇6

𝜇3
2

+
𝜇3

4

𝜇4
2

)/𝑛,

Var(𝐶5/𝐶1) = ( 𝜇10
⟨𝑁⟩2 +

900𝜇5
2

⟨𝑁⟩2 −
900𝜇3

2𝜇4

⟨𝑁⟩2 −
1000𝜇2

2𝜇2
3

⟨𝑁⟩2 +
160𝜇2

2𝜇6

⟨𝑁⟩2 + 240𝜇2𝜇3𝜇5
⟨𝑁⟩2 +

125𝜇2𝜇2
4

⟨𝑁⟩2

− 20𝜇2𝜇8
⟨𝑁⟩2 +

200𝜇2
3𝜇4

⟨𝑁⟩2 − 20𝜇3𝜇7
⟨𝑁⟩2 − 10𝜇4𝜇6

⟨𝑁⟩2 −
𝜇2

5
⟨𝑁⟩2 +

600𝜇4
2𝜇3

⟨𝑁⟩3

−
60𝜇3

2𝜇5

⟨𝑁⟩3 −
300𝜇2

2𝜇3𝜇4

⟨𝑁⟩3 −
200𝜇2𝜇3

3
⟨𝑁⟩3 + 20𝜇2𝜇3𝜇6

⟨𝑁⟩3 + 30𝜇2𝜇4𝜇5
⟨𝑁⟩3

+
20𝜇2

3𝜇5

⟨𝑁⟩3 − 2𝜇5𝜇6
⟨𝑁⟩3 +

100𝜇3
2𝜇2

3
⟨𝑁⟩4 −

20𝜇2
2𝜇3𝜇5

⟨𝑁⟩4 +
𝜇2𝜇2

5
⟨𝑁⟩4 )/𝑛,

Var(𝐶6/𝐶2) = (− 30𝜇10
𝜇2

+ 𝜇12

𝜇2
2

− 3600𝜇4
2 + 5400𝜇2

2𝜇4 + 30000𝜇2𝜇2
3 − 1800𝜇2𝜇6

− 8160𝜇3𝜇5 − 225𝜇2
4 + 345𝜇8 −

3900𝜇2
3𝜇4

𝜇2
+ 840𝜇3𝜇7

𝜇2
− 120𝜇4𝜇6

𝜇2

+
216𝜇2

5
𝜇2

+
2300𝜇4

3

𝜇2
2

−
140𝜇2

3𝜇6

𝜇2
2

+ 240𝜇3𝜇4𝜇5

𝜇2
2

− 40𝜇3𝜇9

𝜇2
2

− 12𝜇5𝜇7

𝜇2
2

+
30𝜇2

6

𝜇2
2

−
520𝜇3

3𝜇5

𝜇3
2

+
20𝜇2

3𝜇8

𝜇3
2

+ 52𝜇3𝜇5𝜇6

𝜇3
2

− 2𝜇6𝜇8

𝜇3
2

+
100𝜇4

3𝜇4

𝜇4
2

−
20𝜇2

3𝜇4𝜇6

𝜇4
2

+
𝜇4𝜇2

6

𝜇4
2

)/𝑛,

Var(𝐶7/𝐶1) = (
861𝜇10𝜇2

2
⟨𝑁⟩2 − 70𝜇10𝜇4

⟨𝑁⟩2 − 70𝜇11𝜇3
⟨𝑁⟩2 − 42𝜇12𝜇2

⟨𝑁⟩2 + 𝜇14
⟨𝑁⟩2 +

396900𝜇7
2

⟨𝑁⟩2 −
529200𝜇5

2𝜇4

⟨𝑁⟩2
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−
1102500𝜇4

2𝜇2
3

⟨𝑁⟩2 +
79380𝜇4

2𝜇6

⟨𝑁⟩2 +
299880𝜇3

2𝜇3𝜇5

⟨𝑁⟩2 +
176400𝜇3

2𝜇2
4

⟨𝑁⟩2 −
10080𝜇3

2𝜇8

⟨𝑁⟩2

+
558600𝜇2

2𝜇2
3𝜇4

⟨𝑁⟩2 −
33600𝜇2

2𝜇3𝜇7

⟨𝑁⟩2 −
29400𝜇2

2𝜇4𝜇6

⟨𝑁⟩2 −
10584𝜇2

2𝜇2
5

⟨𝑁⟩2 +
137200𝜇2𝜇4

3
⟨𝑁⟩2

−
43120𝜇2𝜇2

3𝜇6

⟨𝑁⟩2 − 76440𝜇2𝜇3𝜇4𝜇5
⟨𝑁⟩2 + 2310𝜇2𝜇3𝜇9

⟨𝑁⟩2 −
14700𝜇2𝜇3

4
⟨𝑁⟩2 + 1890𝜇2𝜇4𝜇8

⟨𝑁⟩2

+ 966𝜇2𝜇5𝜇7
⟨𝑁⟩2 +

343𝜇2𝜇2
6

⟨𝑁⟩2 −
15680𝜇3

3𝜇5

⟨𝑁⟩2 −
14700𝜇2

3𝜇2
4

⟨𝑁⟩2 +
1505𝜇2

3𝜇8

⟨𝑁⟩2 + 2590𝜇3𝜇4𝜇7
⟨𝑁⟩2

+ 2254𝜇3𝜇5𝜇6
⟨𝑁⟩2 +

1715𝜇2
4𝜇6

⟨𝑁⟩2 +
1911𝜇4𝜇2

5
⟨𝑁⟩2 − 42𝜇5𝜇9

⟨𝑁⟩2 − 14𝜇6𝜇8
⟨𝑁⟩2 −

𝜇2
7

⟨𝑁⟩2 +
264600𝜇6

2𝜇3

⟨𝑁⟩3

−
26460𝜇5

2𝜇5

⟨𝑁⟩3 −
220500𝜇4

2𝜇3𝜇4

⟨𝑁⟩3 +
1260𝜇4

2𝜇7

⟨𝑁⟩3 −
235200𝜇3

2𝜇3
3

⟨𝑁⟩3 +
11760𝜇3

2𝜇3𝜇6

⟨𝑁⟩3

+
17640𝜇3

2𝜇4𝜇5

⟨𝑁⟩3 +
47040𝜇2

2𝜇2
3𝜇5

⟨𝑁⟩3 +
44100𝜇2

2𝜇3𝜇2
4

⟨𝑁⟩3 −
420𝜇2

2𝜇3𝜇8

⟨𝑁⟩3 −
840𝜇2

2𝜇4𝜇7

⟨𝑁⟩3

−
1176𝜇2

2𝜇5𝜇6

⟨𝑁⟩3 +
39200𝜇2𝜇3

3𝜇4

⟨𝑁⟩3 −
1120𝜇2𝜇2

3𝜇7

⟨𝑁⟩3 − 1960𝜇2𝜇3𝜇4𝜇6
⟨𝑁⟩3 −

2352𝜇2𝜇3𝜇2
5

⟨𝑁⟩3

−
1470𝜇2𝜇2

4𝜇5

⟨𝑁⟩3 + 42𝜇2𝜇5𝜇8
⟨𝑁⟩3 + 56𝜇2𝜇6𝜇7

⟨𝑁⟩3 −
3920𝜇2

3𝜇4𝜇5

⟨𝑁⟩3 −
2450𝜇3𝜇3

4
⟨𝑁⟩3 + 70𝜇3𝜇4𝜇8

⟨𝑁⟩3

+ 112𝜇3𝜇5𝜇7
⟨𝑁⟩3 +

70𝜇2
4𝜇7

⟨𝑁⟩3 − 2𝜇7𝜇8
⟨𝑁⟩3 +

44100𝜇5
2𝜇2

3
⟨𝑁⟩4 −

8820𝜇4
2𝜇3𝜇5

⟨𝑁⟩4 −
14700𝜇3

2𝜇2
3𝜇4

⟨𝑁⟩4

+
420𝜇3

2𝜇3𝜇7

⟨𝑁⟩4 +
441𝜇3

2𝜇2
5

⟨𝑁⟩4 +
1470𝜇2

2𝜇3𝜇4𝜇5

⟨𝑁⟩4

−
42𝜇2

2𝜇5𝜇7

⟨𝑁⟩4 +
1225𝜇2𝜇2

3𝜇2
4

⟨𝑁⟩4 − 70𝜇2𝜇3𝜇4𝜇7
⟨𝑁⟩4 +

𝜇2𝜇2
7

⟨𝑁⟩4 )/𝑛,

Var(𝐶8/𝐶2) = (−27300𝜇10𝜇2 + 4760𝜇10𝜇4
𝜇2

+
3136𝜇10𝜇2

3

𝜇2
2

+ 112𝜇10𝜇3𝜇5

𝜇3
2

+
70𝜇10𝜇2

4

𝜇3
2

− 2𝜇10𝜇8

𝜇3
2

+ 5376𝜇11𝜇3
𝜇2

− 112𝜇11𝜇5

𝜇2
2

+ 1624𝜇12 − 140𝜇12𝜇4

𝜇2
2

− 112𝜇13𝜇3

𝜇2
2

− 56𝜇14
𝜇2

+ 𝜇16

𝜇2
2

− 3572100𝜇6
2 + 6747300𝜇4

2𝜇4 + 48686400𝜇3
2𝜇2

3 − 1693440𝜇3
2𝜇6 − 13335840𝜇2

2𝜇3𝜇5

− 2425500𝜇2
2𝜇2

4 + 282240𝜇2
2𝜇8 − 25166400𝜇2𝜇2

3𝜇4 + 1545600𝜇2𝜇3𝜇7 + 664440𝜇2𝜇4𝜇6

+ 606816𝜇2𝜇2
5 − 1254400𝜇4

3 + 1881600𝜇2
3𝜇6 + 3974880𝜇3𝜇4𝜇5 − 119840𝜇3𝜇9 + 102900𝜇3

4

− 78540𝜇4𝜇8 − 77952𝜇5𝜇7 − 784𝜇2
6 −

439040𝜇3
3𝜇5

𝜇2
+

1764000𝜇2
3𝜇2

4
𝜇2

−
115360𝜇2

3𝜇8

𝜇2

− 268800𝜇3𝜇4𝜇7
𝜇2

− 119168𝜇3𝜇5𝜇6
𝜇2

−
31360𝜇2

4𝜇6
𝜇2

−
131712𝜇4𝜇2

5
𝜇2

+ 3808𝜇5𝜇9
𝜇2

− 840𝜇6𝜇8
𝜇2

+
512𝜇2

7
𝜇2

−
62720𝜇2

3𝜇4𝜇6

𝜇2
2

+
159936𝜇2

3𝜇2
5

𝜇2
2

+
3920𝜇3𝜇2

4𝜇5

𝜇2
2

+ 8960𝜇3𝜇4𝜇9

𝜇2
2
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+ 224𝜇3𝜇5𝜇8

𝜇2
2

+ 896𝜇3𝜇6𝜇7

𝜇2
2

+
28175𝜇4

4

𝜇2
2

+
2100𝜇2

4𝜇8

𝜇2
2

+ 9856𝜇4𝜇5𝜇7

𝜇2
2

+
3136𝜇2

5𝜇6

𝜇2
2

− 16𝜇7𝜇9

𝜇2
2

+
56𝜇2

8

𝜇2
2

+
62720𝜇3

3𝜇4𝜇5

𝜇3
2

+
39200𝜇2

3𝜇3
4

𝜇3
2

−
1120𝜇2

3𝜇4𝜇8

𝜇3
2

−
7168𝜇2

3𝜇5𝜇7

𝜇3
2

−
4480𝜇3𝜇2

4𝜇7

𝜇3
2

− 7840𝜇3𝜇4𝜇5𝜇6

𝜇3
2

−
6272𝜇3𝜇3

5

𝜇3
2

+ 128𝜇3𝜇7𝜇8

𝜇3
2

−
4900𝜇3

4𝜇6

𝜇3
2

−
3920𝜇2

4𝜇2
5

𝜇3
2

+ 140𝜇4𝜇6𝜇8

𝜇3
2

+
112𝜇2

5𝜇8

𝜇3
2

+
3136𝜇2

3𝜇4𝜇2
5

𝜇4
2

+
3920𝜇3𝜇3

4𝜇5

𝜇4
2

− 112𝜇3𝜇4𝜇5𝜇8

𝜇4
2

+
1225𝜇5

4

𝜇4
2

−
70𝜇3

4𝜇8

𝜇4
2

+
𝜇4𝜇2

8

𝜇4
2

)/𝑛,

Var(𝜅2/𝜅1) = (−
𝜇2

2
⟨𝑁⟩2 + 𝜇4

⟨𝑁⟩2 − 2𝜇2𝜇3
⟨𝑁⟩3 +

𝜇3
2

⟨𝑁⟩4 )/𝑛,

Var(𝜅3/𝜅1) = (
9𝜇3

2
⟨𝑁⟩2 −

9𝜇2
2

⟨𝑁⟩2 + 24𝜇2𝜇3
⟨𝑁⟩2 − 6𝜇2𝜇4

⟨𝑁⟩2 −
𝜇2

3
⟨𝑁⟩2 + 9𝜇4

⟨𝑁⟩2 − 6𝜇5
⟨𝑁⟩2

+ 𝜇6
⟨𝑁⟩2 −

18𝜇3
2

⟨𝑁⟩3 +
6𝜇2

2𝜇3

⟨𝑁⟩3 − 18𝜇2𝜇3
⟨𝑁⟩3 + 6𝜇2𝜇4

⟨𝑁⟩3

+
6𝜇2

3
⟨𝑁⟩3 − 2𝜇3𝜇4

⟨𝑁⟩3 +
9𝜇3

2
⟨𝑁⟩4 −

6𝜇2
2𝜇3

⟨𝑁⟩4 +
𝜇2𝜇2

3
⟨𝑁⟩4 )/𝑛,

Var(𝜅4/𝜅1) = (−
36𝜇4

2
⟨𝑁⟩2 +

456𝜇3
2

⟨𝑁⟩2 −
432𝜇2

2𝜇3

⟨𝑁⟩2 +
48𝜇2

2𝜇4

⟨𝑁⟩2 −
121𝜇2

2
⟨𝑁⟩2 +

64𝜇2𝜇2
3

⟨𝑁⟩2

+ 528𝜇2𝜇3
⟨𝑁⟩2 − 370𝜇2𝜇4

⟨𝑁⟩2 + 108𝜇2𝜇5
⟨𝑁⟩2 − 12𝜇2𝜇6

⟨𝑁⟩2 −
124𝜇2

3
⟨𝑁⟩2 + 60𝜇3𝜇4

⟨𝑁⟩2 − 8𝜇3𝜇5
⟨𝑁⟩2

−
𝜇2

4
⟨𝑁⟩2 + 121𝜇4

⟨𝑁⟩2 − 132𝜇5
⟨𝑁⟩2 + 58𝜇6

⟨𝑁⟩2 − 12𝜇7
⟨𝑁⟩2 + 𝜇8

⟨𝑁⟩2 +
108𝜇4

2
⟨𝑁⟩3 −

60𝜇3
2𝜇3

⟨𝑁⟩3 −
396𝜇3

2
⟨𝑁⟩3

+
502𝜇2

2𝜇3

⟨𝑁⟩3 −
72𝜇2

2𝜇4

⟨𝑁⟩3 +
6𝜇2

2𝜇5

⟨𝑁⟩3 −
120𝜇2𝜇2

3
⟨𝑁⟩3 + 20𝜇2𝜇3𝜇4

⟨𝑁⟩3 − 242𝜇2𝜇3
⟨𝑁⟩3 + 132𝜇2𝜇4

⟨𝑁⟩3

− 22𝜇2𝜇5
⟨𝑁⟩3 +

132𝜇2
3

⟨𝑁⟩3 − 94𝜇3𝜇4
⟨𝑁⟩3 + 12𝜇3𝜇5

⟨𝑁⟩3 +
12𝜇2

4
⟨𝑁⟩3 − 2𝜇4𝜇5

⟨𝑁⟩3 +
9𝜇5

2
⟨𝑁⟩4 −

66𝜇4
2

⟨𝑁⟩4 +
36𝜇3

2𝜇3

⟨𝑁⟩4

−
6𝜇3

2𝜇4

⟨𝑁⟩4 +
121𝜇3

2
⟨𝑁⟩4 −

132𝜇2
2𝜇3

⟨𝑁⟩4 +
22𝜇2

2𝜇4

⟨𝑁⟩4 +
36𝜇2𝜇2

3
⟨𝑁⟩4 − 12𝜇2𝜇3𝜇4

⟨𝑁⟩4 +
𝜇2𝜇2

4
⟨𝑁⟩4 )/𝑛,

Var(𝜅2) = (−𝜇2
2 + 𝜇2 − 2𝜇3 + 𝜇4)/𝑛,

Var(𝜅3) = (9𝜇3
2 − 21𝜇2

2 + 24𝜇2𝜇3 − 6𝜇2𝜇4 + 4𝜇2 − 𝜇2
3 − 12𝜇3 + 13𝜇4 − 6𝜇5 + 𝜇6)/𝑛,

Var(𝜅4) = (−36𝜇4
2 + 456𝜇3

2 − 432𝜇2
2𝜇3 + 48𝜇2

2𝜇4 − 337𝜇2
2 + 64𝜇2𝜇2

3 + 648𝜇2𝜇3

− 370𝜇2𝜇4 + 108𝜇2𝜇5 − 12𝜇2𝜇6 + 36𝜇2 − 124𝜇2
3 + 60𝜇3𝜇4 − 8𝜇3𝜇5

− 132𝜇3 − 𝜇2
4 + 193𝜇4 − 144𝜇5 + 58𝜇6 − 12𝜇7 + 𝜇8)/𝑛,

Var(𝜅5) = (𝜇10 + 900𝜇5
2 − 9900𝜇4

2 + 8400𝜇3
2𝜇3 − 900𝜇3

2𝜇4 + 18465𝜇3
2 − 1000𝜇2

2𝜇2
3
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− 30200𝜇2
2𝜇3 + 10050𝜇2

2𝜇4 − 1920𝜇2
2𝜇5 + 160𝜇2

2𝜇6 − 7540𝜇2
2 + 9900𝜇2𝜇2

3

− 3400𝜇2𝜇3𝜇4 + 240𝜇2𝜇3𝜇5 + 18800𝜇2𝜇3 + 125𝜇2𝜇2
4 − 15070𝜇2𝜇4

+ 7400𝜇2𝜇5 − 2110𝜇2𝜇6 + 320𝜇2𝜇7 − 20𝜇2𝜇8 + 576𝜇2 − 800𝜇3
3 + 200𝜇2

3𝜇4

− 5705𝜇2
3 + 5000𝜇3𝜇4 − 1570𝜇3𝜇5 + 280𝜇3𝜇6 − 20𝜇3𝜇7 − 2400𝜇3 − 450𝜇2

4

+ 120𝜇4𝜇5 − 10𝜇4𝜇6 + 4180𝜇4 − 𝜇2
5 − 3980𝜇5 + 2273𝜇6 − 800𝜇7 + 170𝜇8 − 20𝜇9)/𝑛,

Var(𝜅6) = (−30𝜇10𝜇2 + 395𝜇10 − 30𝜇11 + 𝜇12 − 8100𝜇6
2 + 294300𝜇5

2 − 243000𝜇4
2𝜇3 + 13500𝜇4

2𝜇4

− 916920𝜇4
2 + 39600𝜇3

2𝜇2
3 + 1395000𝜇3

2𝜇3 − 340200𝜇3
2𝜇4 + 48600𝜇3

2𝜇5 − 2880𝜇3
2𝜇6

+ 843105𝜇3
2 − 510600𝜇2

2𝜇2
3 + 144000𝜇2

2𝜇3𝜇4 − 9720𝜇2
2𝜇3𝜇5 − 1838400𝜇2

2𝜇3 − 3600𝜇2
2𝜇2

4

+ 918810𝜇2
2𝜇4 − 313650𝜇2

2𝜇5 + 67620𝜇2
2𝜇6 − 8100𝜇2

2𝜇7 + 405𝜇2
2𝜇8 − 237076𝜇2

2 + 48000𝜇2𝜇3
3

− 9600𝜇2𝜇2
3𝜇4 + 876620𝜇2𝜇2

3 − 548250𝜇2𝜇3𝜇4 + 115200𝜇2𝜇3𝜇5 − 14700𝜇2𝜇3𝜇6 + 840𝜇2𝜇3𝜇7

+ 697200𝜇2𝜇3 + 48525𝜇2𝜇2
4 − 10350𝜇2𝜇4𝜇5 + 510𝜇2𝜇4𝜇6 − 683810𝜇2𝜇4 + 216𝜇2𝜇2

5

+ 439710𝜇2𝜇5 − 183218𝜇2𝜇6 + 48900𝜇2𝜇7 − 8070𝜇2𝜇8 + 750𝜇2𝜇9 + 14400𝜇2 − 400𝜇4
3

− 111000𝜇3
3 + 72200𝜇2

3𝜇4 − 8400𝜇2
3𝜇5 + 440𝜇2

3𝜇6 − 272945𝜇2
3 − 9750𝜇3𝜇2

4 + 1020𝜇3𝜇4𝜇5

+ 322950𝜇3𝜇4 − 146298𝜇3𝜇5 + 45150𝜇3𝜇6 − 8580𝜇3𝜇7 + 900𝜇3𝜇8 − 40𝜇3𝜇9 − 65760𝜇3

+ 225𝜇3
4 − 49195𝜇2

4 + 24750𝜇4𝜇5 − 4970𝜇4𝜇6 + 600𝜇4𝜇7 − 30𝜇4𝜇8 + 129076𝜇4 − 1245𝜇2
5

+ 210𝜇5𝜇6 − 12𝜇5𝜇7 − 143700𝜇5 − 𝜇2
6 + 100805𝜇6 − 46710𝜇7 + 14523𝜇8 − 3000𝜇9)/𝑛.

C: Statistical Uncertainty of Efficiency Corrected Cumulants
In this section we show formulas for statistical uncertainty of detector efficiency corrected

cumulants only up to 2nd order due to length limit of thesis. The number of terms rises quite
high when it goes up to 3rd order. The formulas are derived according to Delta theorem [75,
84] by means of several useful Python [98] packages like Sympy [99]. The code is shared
online [100] and one can use it to generate higher-order formulas.

Var(𝐶1) = (−⟨𝑄(1,1)⟩2 + ⟨𝑄2
(1,1)⟩)/𝑛,

Var(𝐶2) = (−2 ∗ ⟨𝑄(1,1)⟩ ∗ (−⟨𝑄(1,1)⟩ ∗ ⟨𝑄2
(1,1)⟩ + ⟨𝑄3

(1,1)⟩)

− 2 ∗ ⟨𝑄(1,1)⟩ ∗ (−⟨𝑄(1,1)⟩ ∗ ⟨𝑄(2,1)⟩ + ⟨𝑄(1,1)𝑄(2,1)⟩) + 2 ∗ ⟨𝑄(1,1)⟩ ∗ (−⟨𝑄(1,1)⟩ ∗ ⟨𝑄(2,2)⟩

+ ⟨𝑄(1,1)𝑄(2,2)⟩) − 2 ∗ ⟨𝑄(1,1)⟩ ∗ (−⟨𝑄(1,1)⟩ ∗ ⟨𝑄2
(1,1)⟩ − ⟨𝑄(1,1)⟩ ∗ ⟨𝑄(2,1)⟩ + ⟨𝑄(1,1)⟩ ∗ ⟨𝑄(2,2)⟩

− 2 ∗ ⟨𝑄(1,1)⟩ ∗ (−⟨𝑄(1,1)⟩2 + ⟨𝑄2
(1,1)⟩) + ⟨𝑄3

(1,1)⟩ + ⟨𝑄(1,1)𝑄(2,1)⟩ − ⟨𝑄(1,1)𝑄(2,2)⟩)

− ⟨𝑄2
(1,1)⟩2 − 2 ∗ ⟨𝑄2

(1,1)⟩ ∗ ⟨𝑄(2,1)⟩ + 2 ∗ ⟨𝑄2
(1,1)⟩ ∗ ⟨𝑄(2,2)⟩ + 2 ∗ ⟨𝑄2

(1,1)𝑄(2,1)⟩
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− 2 ∗ ⟨𝑄2
(1,1)𝑄(2,2)⟩ + ⟨𝑄4

(1,1)⟩ − ⟨𝑄(2,1)⟩2 + 2 ∗ ⟨𝑄(2,1)⟩ ∗ ⟨𝑄(2,2)⟩ + ⟨𝑄2
(2,1)⟩

− 2 ∗ ⟨𝑄(2,1)𝑄(2,2)⟩ − ⟨𝑄(2,2)⟩2 + ⟨𝑄2
(2,2)⟩)/𝑛.
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