

Yingjie Zhou for the STAR collaboration

20th May, 2024

Office of Science CPOD 2024 - The 15th Workshop on Critical Point and Onset of Deconfinement

z.yingjie@gsi.de

1) Motivation

2) Datasets and Experimental Setup

3) Results and Discussion I) Yields

- Excitation function, yield ratios
- Centrality dependence
- Baryon to meson yield ratio

II) Transverse distribution

4) Summary and Outlook

Yingjie Zhou (for the STAR collaboration)

Outline

Explore QCD Phase Diagram at RHIC

Strangeness as a Probe to Study the Nuclear Matter

Yingjie Zhou (for the STAR collaboration)

• Rich structure in these excitation functions

- Production mechanism is different at high and low baryon density

pair production: $gg \rightarrow s\bar{s}, q\bar{q} \rightarrow s\bar{s}$ hadronic interaction: $BB \rightarrow BYK$, $BB \rightarrow BBK\bar{K}$ B: N, p, Δ etc. Y: Λ , Ξ , etc. K: K⁰, K⁺

- Λ/π peaks at $\sqrt{s_{NN}} \sim 8$ GeV Model: Baryon density maximal at $\sqrt{s_{NN}} \sim 8 \text{ GeV}^{[1]}$
- Scarce data at low energy, more data is needed!
- ➡Connections to the softness of dense nuclear matter, phase boundary, and onset of deconfinement

STAR Detector and BES-II

• STAR BES-II ($\sqrt{s_{NN}} = 3-54.4 \text{ GeV}$) • 10× statistics compared to BES-I • Detector upgrades: iTPC, eTOF • FXT extends energy down to 3 GeV

Yingjie Zhou (for the STAR collaboration)

Particle Acceptance

Rapidity of C.M. y_{C.M.} • Particle rapidity coverage from beam rapidity to mid-rapidity

Strangeness Reconstruction

• Comprehensive strangeness (K⁻, K⁰_S, Λ , ϕ , Ξ^-) measurements at different energies from 3 to 4.5 GeV

Yingjie Zhou (for the STAR collaboration)

STAR: Phys. Lett. B 831, 137152 (2022)

Strangeness Reconstruction

Au+Au 3 GeV

• Comprehensive strangeness (K⁻, K⁰_S, Λ , ϕ , Ξ^-) measurements at different energies from 3 to 4.5 GeV

Yingjie Zhou (for the STAR collaboration)

Strangeness Excitation Function

STAR: Phys. Lett. B 831, 137152 (2022) STAR: Phys. Rev. C 102, 034909 (2020) HADES: Phys.Lett.B 793 (2019) 457-463

Yingjie Zhou (for the STAR collaboration)

- Rich structure in these excitation functions
- **Connections to the softness of dense nuclear matter,** phase boundary, and onset of deconfinement

- 1) Λ and K_S^0 cross at $\sqrt{s_{NN}} \sim 8$ GeV: baryon-dominated \leftrightarrow meson-dominated
- 2) First measurement of Ξ^- near- or sub-threshold energies in Au+Au collisions

Mid-rapidity Yield Ratio

UrQMD: cascade mode, hard EOS

Yingjie Zhou (for the STAR collaboration)

to the medium properties

[1] S. Chatterjee et al. Adv.High Energy Phys. 349013 (2015)

Mid-rapidity Yield Ratio

Yields Ratios K_{s}^{0}/Λ **10**⁻¹ 10^{-2} 10^{-3}

GCE fails at low energies

→Change of medium properties at the high-density region

UrQMD: cascade mode, hard EOS

Yingjie Zhou (for the STAR collaboration)

STAR: Phys. Rev. C 102, 034909 (2020) (THERMUS) S. Wheaton, et al. Comput.Phys.Commun. 180 (2009)

Thermal model parameters: T and μ_{B} taken from [1], with net S = 0

1) Canonical Ensemble (CE) with strangeness correlation length 2.9 – 3.9 fm, simultaneously describes K_{S}^{0}/Λ , Λ/p , and Ξ^{-}/Λ in the measured energy range,

• Similar observations for ϕ/K^- and ϕ/Ξ^-

[1] V. Vovchenko, et al. Phys. Rev. C 93, 064906 (2016)

11

Centrality Dependence of 4π Yields - 3 GeV

Yingjie Zhou (for the STAR collaboration)

1) Single strange hadron yields (K⁻, K⁰_S, Λ) follow common $\langle N_{part} \rangle$

scaling, but Ξ^- seems to deviate from the scaling trend (2σ deviation from S=1)

Due to Ξ^- Sub-threshold production?

 \rightarrow Multi-step collisions involving pions and Delta resonances \rightarrow sensitive to the baryon density, which depends on the EOS^[1]

> $NN \rightarrow \Xi^{-}K^{+}K^{+}N \sqrt{S_{\text{thresh.}}} = 3.25 \text{ GeV}$ $NN \rightarrow K^0 N\Lambda \sqrt{S_{thresh.}} = 2.56 \text{ GeV}$

2) p+p following the scaling trend

→ Hadronic interactions drive the observed trends

[1] T. Song, et al. Phys. Rev. C 103, 044901 (2021) (p+p) V. Kolesnikov, et al. Phys. Part. Nuclei Lett. 17, (2020) 142–153 (PHQMD) J. Aichelin, et al. Phys. Rev. C 101, 044905 (2020)

Centrality Dependence of 4π Yields - 3 GeV

1) Single strange hadron yields (K⁻, K⁰_S, Λ) follow common $\langle N_{part} \rangle$

scaling, but Ξ^- seems to deviate from the scaling trend (2σ deviation from S=1)

Due to Ξ^- Sub-threshold production?

 \rightarrow Multi-step collisions involving pions and Delta resonances \rightarrow sensitive to the baryon density, which depends on the EOS^[1]

> $NN \rightarrow \Xi^{-}K^{+}K^{+}N \sqrt{S_{\text{thresh.}}} = 3.25 \text{ GeV}$ $NN \rightarrow K^0 N\Lambda \sqrt{S_{thresh.}} = 2.56 \text{ GeV}$

2) p+p following the scaling trend

→ Hadronic interactions drive the observed trends

3) PHQMD over-estimate strange hadron yields, but reproduce the scaling trends

PHQMD, w/o momentum dependence Hard: $\kappa = 380$ MeV; Soft: $\kappa = 200$ MeV

[1] T. Song, et al. Phys. Rev. C 103, 044901 (2021) (p+p) V. Kolesnikov, et al. Phys. Part. Nuclei Lett. 17, (2020) 142–153 (PHQMD) J. Aichelin, et al. Phys. Rev. C 101, 044905 (2020)

Centrality Dependence of Mid-rapidity Yields

Yingjie Zhou (for the STAR collaboration)

BES-II (-0.5<y<0) • BES-I (lyl<0.5) \bigcirc HADES (4 π yields) **UrQMD (IyI<0.5) UrQMD (4\pi yields)** $\mathbf{Yield} = \mathbf{C} \times \langle \mathbf{N}_{\mathsf{part}} \rangle^{\alpha_{\mathsf{s}}}$ 30 $\sqrt{\mathbf{s_{NN}}}$ (GeV)

1) Rapid decrease of scaling parameter α_{S} for Ξ^{-} from 4.5 to 7.7 GeV, and saturate at high energy

Hadron dominated medium at $\sqrt{s_{NN}} < 4.5$ GeV

2) UrQMD qualitatively reproduces the energy dependence

• Quantitatively fails at 7.7 – 11.5 GeV, likely due to missing medium effects

14

STAR: Phys. Rev. C 102, 034909 (2020)

Yingjie Zhou (for the STAR collaboration)

[1] STAR: Phys. Rev. C 83, 24901 (2011) [2] ALICE: Phys. Lett. B 728 (2014) 25-38 [3] ALICE: Phys. Rev. C 99, 024906 (2019)

STAR: Phys. Rev. C 102, 034909 (2020)

2) Λ/K_S^0 enhancement not observed at 3 GeV in the measured p_T range

Yingjie Zhou (for the STAR collaboration)

16

Yingjie Zhou (for the STAR collaboration)

17

1) Λ/K_S^0 is enhanced in p_T [1.2, 1.4] GeV/c at 4.5 GeV, but not observed below 3.9 GeV **➡Possible change of medium properties**

Yingjie Zhou (for the STAR collaboration)

Average Transverse Momentum - 3 GeV

PHQMD, w/o momentum dependence Hard: $\kappa = 380 \text{ MeV}$

(PHQMD) J. Aichelin, et al. Phys. Rev. C 101, 044905 (2020)

Yingjie Zhou (for the STAR collaboration)

1) $\langle p_T \rangle$ v.s. $\langle N_{part} \rangle$ consistent with radial flow caused by hadronic interactions

- Gradual increase in $\langle p_T \rangle$ as $\langle N_{part} \rangle$ increase
- Data $\langle p_T \rangle^{K^-} \approx \langle p_T \rangle^{K_S^0} < \langle p_T \rangle^{\phi} \approx \langle p_T \rangle^{\Lambda} \approx \langle p_T \rangle^{\Xi^-}$ follow mass hierarchy
- Data show $\langle p_T \rangle^{\Lambda} < \langle p_T \rangle^{p}$
 - Possibly due to smaller Y-N interaction than N-N interaction?

2) Transport model (PHQMD) with baryon mean field offer consistent $\langle p_T \rangle$ for p, Λ and Ξ^-

19

Average Transverse Momentum - 3 GeV

PHQMD, w/o momentum dependence Hard: $\kappa = 380$ MeV; Soft: $\kappa = 200$ MeV

(PHQMD) J. Aichelin, et al. Phys. Rev. C 101, 044905 (2020)

Yingjie Zhou (for the STAR collaboration)

1) $\langle p_T \rangle$ v.s. $\langle N_{part} \rangle$ consistent with radial flow caused by hadronic interactions

- Gradual increase in $\langle p_T \rangle$ as $\langle N_{part} \rangle$ increase
- Data $\langle p_T \rangle^{K^-} \approx \langle p_T \rangle^{K^0_S} < \langle p_T \rangle^{\phi} \approx \langle p_T \rangle^{\Lambda} \approx \langle p_T \rangle^{\Xi^-}$ follow mass hierarchy
- Data show $\langle p_T \rangle^{\Lambda} < \langle p_T \rangle^{p}$
 - Possibly due to smaller Y-N interaction than N-N interaction?

2) Transport model (PHQMD) with baryon mean field offer consistent $\langle p_T \rangle$ for p, Λ and Ξ^-

• $\langle p_T \rangle$ is sensitive to EOS

Stiff EOS implies a rapid increase in pressure with energy density, harder EOS will lead to harder p_T distribution, larger $\langle p_T \rangle$ ^[1]

Average Transverse Momentum

1) Below 11.5 GeV, $\Lambda \langle m_T \rangle - m_0$ tends to be smaller than proton, while they are compatible at 11.5 GeV or higher • Difference between Y-N and N-N potentials playing a role below 11.5 GeV?

Yingjie Zhou (for the STAR collaboration)

• $\langle m_T \rangle - m_0$ is an approximate representation of the temperature of the system^[1]

[1] L. Van Hove, Phys. Lett. B 118, 138 (1982) STAR: Phys. Rev. C 102, 034909 (2020) STAR: Phys. Rev. C 96, 044904 (2017)

Average Transverse Momentum

• Difference between Y-N and N-N potentials playing a role below 11.5 GeV?

2) Transport model (UrQMD) offers consistent $\langle p_T \rangle$ for Λ and Ξ^- below 5 GeV, but fails at 7.7 GeV or higher

somewhere between 4.5 and 7.7 GeV?

Yingjie Zhou (for the STAR collaboration)

(UrQMD) S. A. Bass, et al. Prog. Part. Nucl. Phys. 41 (1998)

• $\langle m_T \rangle - m_0$ is an approximate representation of the temperature of the system^[1]

1) Below 11.5 GeV, $\Lambda \langle m_T \rangle - m_0$ tends to be smaller than proton, while they are compatible at 11.5 GeV or higher

• Transition from a hadronic interaction dominated matter to matter dominated by quark degrees of freedom

[1] L. Van Hove, Phys. Lett. B 118, 138 (1982) STAR: Phys. Rev. C 102, 034909 (2020) STAR: Phys. Rev. C 96, 044904 (2017)

Kinematic Freeze-out Properties

STAR: Phys. Rev. C 102, 034909 (2020); Phys. Rev. C 96, 044904 (2017); Phys. Rev. Lett. 108, 072301 (2012)

Yingjie Zhou (for the STAR collaboration)

Kinematic Freeze-out Properties

STAR: Phys. Rev. C 102, 034909 (2020); Phys. Rev. C 96, 044904 (2017); Phys. Rev. Lett. 108, 072301 (2012)

Yingjie Zhou (for the STAR collaboration)

1) Freeze-out parameters (T_{kin} , $\langle \beta_T \rangle$) of p, Λ and K_S^0 at 3 GeV do not follow the same trend as π , K, p at 7.7 – 200 GeV

→Change in medium properties (EOS) or expansion dynamics

- 2) Transport model (UrQMD) predicts decreasing T_{kin} from 7.7 – 3 GeV
- Different freeze-out parameters for p, Λ and K_{s}^{0} , similar to 3 GeV data

7.7 - 200 GeV: 0-5%, 5-10%, ...60-80% 3 GeV $\Lambda(K_{S}^{0})$: 0-10%, 10-40%, 40-60% 3 GeV p: 0-10%, 10-20%, 20-40%, 40-80% UrQMD: 0-10%

(UrQMD) S. A. Bass, et al. Prog. Part. Nucl. Phys. 41 (1998)

Summary

- Precision measurements of strangeness (K^{\pm} , K_{S}^{0} , Λ , ϕ and Ξ^{-}) production in 3 4.5 GeV Au+Au collisions
 - 1) <u>Steeper centrality dependence of mid-rapidity yields (α_S) at 3 4.5 GeV than that at higher energies</u>
 - 2) <u>Baryon-to-meson ratio (Λ/K_c^0) enhancement</u> not observed at 3 3.5 GeV, but observed at 4.5 GeV or higher energies
 - 3) Canonical suppression of strangeness is observed at 3 GeV
 - 4) <u>Freeze-out parameters</u> (T_{kin} , $\langle \beta_T \rangle$) of p, Λ and K_S^0 at 3 GeV do not follow the same trend as π , K, p at 7.7 – 200 GeV
 - →Hadron dominated medium created in 3 GeV Au+Au collisions
 - \blacksquare Onset of partonic degrees of freedom at ~ 3.9 GeV? Or are trends driven by expansion dynamics?

Yingjie Zhou (for the STAR collaboration)

Placeholder for CBM

Yingjie Zhou (for the CBM collaboration)

