

Measurements of strange hadrons ${\rm K}^0{}_{\rm S}, \Lambda,$ and Ξ from Au+Au collisions at $\sqrt{s}_{\rm NN}$ = 7.7, 11.5 and 39 GeV in STAR

Xianglei Zhu (Tsinghua University) For the STAR Collaboration 9/20/2011

Strangeness in Quark Matter, 18-24 September 2011 Polish Academy of Arts and Sciences, Cracow, Poland

Outline

- Motivation for strangeness spectra measurement in STAR beam energy scan (BES)
- Strangeness (K^0_{S} , Λ , Ξ) production at mid-rapidity in BES
 - p_T spectra
 - $< m_T > m_0$
 - Particle yields
 - Particle ratios
 - Nuclear modification factor: R_{CP}
 - Baryon enhancement: Λ/K_{S}^{0}
- Summary

Motivation for strangeness spectra measurement in STAR beam energy scan

- Particle ratios:
 - Test statistical hadronization model.
 - Understand the mechanism of strangeness enhancement at lower energies. Exact system profiles at chemical freeze out.
- Nuclear modification factor, Λ/K^0_S ratio: parton recombination at lower energies?
- Resolve discrepancy of NA57 and NA49 data.

STAR detector in BES

- For strangeness, |y|<1 can be measured. This analysis focuses on mid-rapidity (|y|<0.5)
- Centrality is determined by the reference multiplicity of TPC

√s _№ (GeV)	Good events (Analyzed) Million MB
7.7	5 (<mark>5</mark>)
11.5	12.4 (12.4)
39	169 (13.5)

Signals of strangeness particles in $\sqrt{s_{NN}}$ = 7.7 GeV Au+Au collisions

- Very good signals of all weak decay strange particles
- Excellent performance of STAR detector even at the lowest collision energy

Compared with the published data

Solid red, STAR BES, 0-5% most central, statistical error only. Solid blue, STAR published, most central, PRL 89, 092301; PRL92, 182301. Open, NA49, most central, from NA49, PRC78, 034918

STAR BES data matches the NA49 data well.

Compared with the published data

STAR BES particle yield at mid-rapidity consistent with NA49 in general.

NA49, PRC78,034918. 7% or 10% most central. (|y|<0.4 or 0.5)

NA57, PLB595,68; JPG32, 427 0-4.5% most central, |y|<0.5, stat. err. only

STAR, PRL86,89,92,98;PRC83 0-5% most central, |y|<0.5

*The NA57 and NA49 yields have been scaled by the corresponding number of wounded nucleons: <u>dN/dy / Nw * Npart(STAR)</u>

Bbar/B

 Bbar/B ratios show similar centrality dependence at three energies: decrease with the increase of centrality

Excitation function of Bbar/B ratios

Solid red: STAR BES Solid blue: STAR published Open blue: NA49

STAR BES data lies in a trend with NA49 data

Compare with models

SHM(B): statistical hadronization model,

A. Andronic et.al., NPA772

UrQMD: M. Bleicher et.al., IPG25, 1859

HSD: E.Bratkovskaya et.al, PRC69; W. Cassing and E. Bratkovskaya, Phys. Rept. 308

NA49: PRC78,034918

AGS: E896, PRL88; E917, PRL87; E891, PLB382; E802, PRC57

PHENIX: PRL88, 242301

STAR: PRL89,092301; PRL92, 182301; PRL89, 092301; PRL98, 062301; PLB595, 143; PRL92, 112301

The π yield in denominator is $1.5(\pi^+ + \pi^-)$, for |y| < 0.1, data taken from L. Kumar (STAR), QM2011

STAR BES data agree well with the statistical hadronization model at three energies

- R_{CP} of strange particles at 39 GeV show similar trend as that in higher energies.
- At 11.5 and 7.7 GeV, all particles R_{CP} are larger than 1 at intermediate p_{T} .

Summary

- STAR has accumulated significant amount of data for strangeness study in Beam Energy Scan.
- STAR data ($< m_T > m_0$, particle yields, ratios) shows good agreement with NA49 data in general.
- STAR particle ratios $(\Lambda/\pi, \Xi/\pi)$ in most central collisions agree well with the statistical hadronization model at three energies.
- K_{S}^{0} , Λ and Ξ 's R_{CP} are all much larger than 1 at 11.5 and 7.7 GeV.
- Λ/K_{S}^{0} values keep increasing with the decrease of collision energy from 39 to 7.7 GeV
- Systematic errors from detector acceptance and efficiencies are the expected values, full systematics study is on-going.

Backup

Comparison to NA49 most central spectra

Weak decay feed down contribution to Λ uncorrected yield

Strangeness reconstruction in STAR

Strange particles are reconstructed with their secondary TPC tracks through weak decay topology, thanks to the full azimuthal coverage of TPC.

 $K_s^0 \rightarrow \pi^+ \pi^-, \ c\tau = 2.68 \text{cm}$ $\Lambda \rightarrow p\pi, c\tau = 7.89 \text{cm}$ $\Xi \rightarrow \Lambda \pi \rightarrow p\pi\pi, c\tau = 4.91 \text{cm}$ $\Omega \rightarrow \Lambda K \rightarrow p\pi K, c\tau = 2.46 \text{cm}$

The beam energy scan in STAR

STAR, arXiv:1007.2613

- Lattice QCD estimates indicate that the critical point falls within the interval $250 < \mu_B < 450$ MeV [Karsch 2004, Fodor and Katz 2004, Gavai and Gupta 2005]
- Experiment evidence for either critical point or first order phase transition is key issue to understand the QCD phase diagram.
- The black closed circles are current heavy-ion experimental calculations of the chemical freeze-out temperature, T_{ch} , and μ_B based on statistical model fits to the measured particle ratios
- The yellow curves show the estimated trajectories of the possible collision energies at RHIC.
- In 2010, three energies have been scanned: 7.7, 11.5 and 39 GeV