

New Hypernuclei Measurements from STAR

Outline

- 1. Introduction
- 2. Particle Yields
- 3. Transverse Momentum Distribution
- 4. Collective Flow
- 5. Summary and Outlook

He Yingjie Zhou for the STAR Collaboration CCNU, GSI

Quark Matter 2025, Frankfurt, Germany

Supported in part by U.S. DEPARTMENT OF ENERGY

Office of Science

Hypernuclei and Hyperon-Nucleon (Y-N) Interaction

• Hyperon Puzzle: difficulty to reconcile the presence of hyperons in their interiors

• Density dependent YN, YNN interactions are essential for solving the hyperon puzzle

• Hypernuclei have been measured in heavymeasured masses of neutron star witclear matter procellisions over a broad range of baryon densities

constrain the in-medium Y-N interaction?

Hypernuclei Production Mechanisms

When are nuclei produced in a heavy-ion production mechanisms before we can collision? use them to probe the in-medium Y–N Nuclear matteriperaduction

1. Thermal models

- Hadrons and (hyper-)nuclei are treated equally
- Yields are predicted with thermal equilibrium assumptions

XY–N dynamics have minimal impact on final yield

- 2. Coalescence model
 - (Hyper-)nuclei formation after kinetic freeze-out
 - Nucleon coalescence
 - Wigner function
 - Emission source size and nuclear radius

✓ In-medium Y–N interactions modify freeze-out phase space, affecting coalescence and hypernuclei yields

Hypernuclei Production Mechanisms

When are nuclei produced in a heavy-ion collision?

- 1. Thermal models
 - Hadrons and (hyper-)nuclei are treated equally
 - Yields are predicted with thermal equilibrium assumptions

XY-N dynamics have minimal impact on final yield

- 2. Coalescence model
 - (Hyper-)nuclei formation after kinetic freeze-out
 - Nucleon coalescence
 - Wigner function
 - Emission source size and nuclear radius

✓ In-medium Y–N interactions modify freeze-out phase space, affecting coalescence and hypernuclei yields

 d/p is fairly well described by thermal model, but t/p, ⁴He/p is overestimated

Recent nuclei measurements poses challenges for thermal model

STAR and Beam Energy Scan

• Hypernuclei are reconstructed using the following decay channels: $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-} \quad ^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-} \quad ^{4}_{\Lambda}He \rightarrow ^{3}He + p + \pi^{-}$ ${}^{5}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He} + p + \pi^{-}$ ⁴He Helps to constrain Λ -N and ΛNN

- Combinatorial background estimated via rotating fragments tracks or event mixing
- Efficiency correction using a data-driven GEANT simulation
 - To account for the decay kinematics of ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He, the three-body decay phase space is weighted according to the Dalitz plot from data

H. Le et al., PRL 134, 072502 (2025) A. Jinno et al., PRC 110, 014001 (2024)

Hypernuclei pt Spectra and Rapidity

- Measurements cover different energies
 - ${}_{\Lambda}^{3}$ H in Au+Au collisions at **3-27** GeV, Au+Au collisions at **200 GeV**
 - ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He in Au+Au collisions at **3-3.5 GeV**
 - ${}^{5}_{\Lambda}$ He in Au+Au collisions at **3 GeV**

$$_{\Lambda}^{3}$$
H Au+Au $\sqrt{s_{NN}}$ = 3-27 GeV

• Significant hypernuclei production at target rapidity, more pronounced for heavier hypernuclei

Spectator matter matters at target rapidity

Excitation Function

STAR, Phys.Rev.Lett. 128(2022)20, 202301 V. Vovchenko et al., PRC 93, 064906 (2016)

]	• ${}^{3}_{\Lambda}$ H plateaus at $\sqrt{s_{NN}} = 3-4$ GeV
	• Similar trend for $^{4}_{\Lambda}\text{H}$ and $^{4}_{\Lambda}\text{He}$
	Interplay between increasing baryon production and stronger strangeness canonical suppress towards low energies
	Establishes low energy collision experimas a promising tool to study exotic strant matter

- I nermal describes /\, over-estimate $^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H, and $^{4}_{\Lambda}$ He, slightly underestimate ${}_{\Lambda}^{5}$ He

on sion

Comparison to Thermal Model at 3 GeV

- Thermal model predicts approx. exponential dependence of yields/(2J+1) vs A
- Light nuclei overestimated by thermal with feed-down from unstable nuclei
- Evidence of the formation of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He excited states ${}^{4}_{\Lambda}\mathsf{H}^{*}(1^{+}) \rightarrow {}^{4}_{\Lambda}\mathsf{H}(0^{+}) + \gamma$

STAR, PLB 834, 137449 (2022)

 Possible feed down from ${}_{\Sigma^0}^5$ He \rightarrow^5_{Λ} He + γ

J. Johnstone et al., J. Phys. G 8, L105 (1982)

Mean Transverse Momentum at 3 GeV

Blast wave function fit $\frac{d^2 N}{2\pi p_{\rm T} dp_{\rm T} dy} = A \int_0^R r dr m_{\rm T} \times I_0(\frac{p_{\rm T} \sinh \rho(r)}{T_{\rm kip}}) K_1(\frac{m_{\rm T} p \cosh \rho(r)}{T_{\rm kin}})$ T_{kin} : kinetic freeze-out temperature $\langle \beta_T \rangle$: average transverse radial flow velocity, $\rho =$ $\tanh^{-1}\beta_r$ n: the exponent of flow velocity profile, n=1

Hydrodynamic-inspired Blast-Wave model: assumes particles are emitted thermally from an expanding source with a common $\langle \beta_T \rangle$ and T_{kin}

- Vary the mass to construct the blast-wave prediction using $p(\Lambda)$ freeze-out parameters

E. Schnedermann et al., PRC 48, 2462 (1993) PLB 794, 50–63 (2019)

 Light nuclei and hypernuclei deviate from the full hydrodynamic picture

Coalescence scenario?

Mean Transverse Momentum at 3 GeV

<u>Coalescence scenario</u>: nuclei formed at a later stage after kinetic freeze-out

- Light nuclei and hypernuclei deviate from the full hydrodynamic picture
 - 1. Less correlated nucleons coalescence to nuclei, leading to smaller $\langle p_T \rangle$ than if perfectly aligned
 - 2. Heavier (hyper)nuclei \rightarrow Large deviation from blast wave ansatz

A. I. Sheikh et al., PRC 106, 054907 (2022)

Small effective volume nucleon's *r* and *p* are less correlated

T. Reichert, SQM 2022, slides (2022)

Mean Transverse Momentum v.s. Collision Energy

STAR, PRC 110, 054911 (2024) STAR, PRL 128, 202301 (2022) STAR, JHEP 2024 (2024) 139

- At $\sqrt{s_{NN}} \ge 7.7$ GeV, $^{3}_{\Lambda}H \langle p_{T} \rangle$ tends to approach the blast-wave prediction with proton freeze-out parameters
- Likely due to larger effective volume, where nucleons that eventually coalesce are more likely to be aligned in space and momentum

Suggests a different effective volume at

 $\sqrt{s_{NN}} \ge 7.7 \text{ GeV}, \text{ with}$ an noticeable change between 4.5 and 7.7 GeV

Large effective volume nucleon's *r* and *p* are correlated

T. Reichert, SQM 2022, slides (2022)

Collective Flow at 3 GeV

STAR, PLB 827, 136941 (2022) STAR, PRL 130, 212301 (2023) See poster by Junyi Han (xx/xx)

- Directed flow of hypernuclei follows mass scaling
- Qualitatively consistent with coalescence formation of hypernuclei

13

Summary and Outlook

- Hypernuclei measurement from STAR BES-II at $\sqrt{s_{NN}} = 3-27$ GeV
 - 1. First measurement of A = 5 hypernuclei yield and directed flow in Au+Au collisions at $\sqrt{s_{NN}} = 3 \text{ GeV}$

 - 2. Thermal model overestimates ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, and ${}^{4}_{\Lambda}$ He, and slightly underestimates ${}^{5}_{\Lambda}$ He 3. Mean transverse momentum tends to be lower than hydrodynamic-inspired blast-wave model at $\sqrt{s_{NN}} < 7.7$ GeV
 - Consistent with coalescence picture: weaker space and momentum correlation among coalescing nucleons in a smaller effective volume at low collision energies
 - 4. Collective flow qualitatively consistent with coalescence model
- Outlook:
- High statistics 3 GeV FXT data: more precise measurement of A < 5 hypernuclei, $^{5}_{\Lambda}$ He intrinsic properties (B_A , dalitz plot, lifetime), search for heavier hypernuclei (A > 5), double-A hypernuclei
- Further constrain production mechanism, structure of hypernuclei, and YN, YY, YNN interactions

Backup Slides Follow

15

Feed-down from Unstable Nuclei

A = 4	E_x (MeV)	J^{π}	Decay channels
⁴ H	g.s.	2-	n(100%)
	0.31	1-	n(100%)
	2.08	0-	n(100%)
	2.83	1-	n(100%)
⁴ He	g.s.	0+	stable
	20.21	0+	p(100%)
	21.01	0-	n(23.8%), p(76.2%)
	21.84	2-	n(37.3%), p(62.7%)
	23.33	2-	n(47.3%), p(52.7%)
	23.64	1-	n(44.5%), p(55.5%)
	24.25	1-	n(47.0%), p(50.5%), d(2.5%)
	25.28	0-	n(48.3%), p(51.7%)
	25.95	1-	n(48.5%), p(51.5%)
	27.42	2+	n(3%), p(3%), d(94%)
	28.31	1+	n(47%), p(48%), d(5%)
	28.37	1-	n(2%), p(2%), d(96%)
	28.39	2-	n(0.25%), p(0.25%), d(99.5%)
	28.64	0-	d(100%)
	28.67	2+	d(100%)
	29.89	2+	n(0.4%), p(0.4%), d(99.2%)
41;	<i>a</i> .c	2-	p(100%)
LI	g.s.	2 1-	p(100%)
	0.52	1 0 ⁻	p(100%)
	2.08	1-	p(100%)
	2.85	1	p(100%)

light nuclei, but not other particles.

A = 5	E_x (MeV)	J^{π}	Decay channels
⁵ H	g.s.	$\frac{1}{2}^{+}$	2n(100%)
⁵ He	g.s. 1.27 16.84	$\frac{3}{2} - \frac{1}{2} - \frac{1}{2} + \frac{3}{2} + \frac{3}{2}$	n(100%) n(100%) n(60%), d(40%)
⁵ Li	g.s. 1.49 16.87	$\frac{3}{2} - \frac{1}{2} - \frac{1}{2} + \frac{3}{2} + \frac{3}{2}$	p(100%) p(100%) p(70%), n(30%)

V. Vovchenko et al., PLB 809, 135746 (2020)

branching ratios in the right column of Table I. For the A = 5 states the channels ${}^{5}H \rightarrow t + n + n$, ${}^{5}He \rightarrow {}^{4}H + p$, ${}^{5}He \rightarrow t + d$, ${}^{5}Li \rightarrow t + d$, ${}$ ⁴He + p, and ⁵Li \rightarrow ⁴Li + n are taken into account. The excited nuclei feeding will thus affect the yields of nucleons and stable

Feed-down from Unstable Nuclei

E864, PRC 65, 014906 (2001)

- Suppression of A=4 unstable states compared to ⁴He ground state observed at E864
- Indicates unstable nuclei yield likely overestimated by thermal model

1'

Coalescence Parameters

See poster by Yixuan Jin (xx/xx)

https://drupal.star.bnl.gov/STAR/presentations/Quark-Matter-2025/Production-Light-Nuclei-AuAu-Collisions-STAR-BES-II-Program-1

Kinetic Freeze-out Parameters

See talk by Hongcan Li (xx/xx)

https://drupal.star.bnl.gov/STAR/node/71381

 Energy dependence at the most central collisions

- Different freeze-out parameter due to different production mechanism between proton and Λ
- Hadronic transport model UrQMD model qualitatively reproduces the trend at 3 - 6.2 GeV

Dalitz Plots

 ${}^{5}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He} + \text{p} + \pi^{-}$

I. Kisel, EPJ Web Conf. 271, 08001 (2022)

