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Hypernuclei and Hyperon-Nucleon (Y-N) Interaction
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• Hyperon Puzzle: difficult to reconcile the 
measured masses of neutron stars with the 
presence of hyperons in their interiors

• Density dependent YN, YNN interactions are 
essential for solving the hyperon puzzle

Neutron 
stars

• Can hypernuclei production be used to 
constrain the in-medium Y-N interaction?

luca.barioglio@cern.ch LHCP 2021

Nuclear matter production

2

• Light (anti)(hyper)nuclei are abundantly produced at the 
LHC in pp, p-Pb and Pb-Pb collisions 

• The production mechanisms of light (anti)nuclei in 
high-energy physics are still not completely understood 

‣ low binding energy (EB ~ 1 MeV) with respect to the 
kinetic freeze-out temperature (Tfo ~ 100 MeV) 

• Two classes of models are available: 

‣ the statistical hadronisation model 

‣ the coalescence model

Heavy-ion 
collisions

𝟥
Λ𝖧

𝟦
Λ𝖧D. Lonardoni et al., PRL 114, 092301 (2015)

• Hypernuclei have been measured in heavy-
ion collisions over a broad range of baryon 
densities

?
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Hypernuclei Production Mechanisms
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Nuclear matter production

2

• Light (anti)(hyper)nuclei are abundantly produced at the 
LHC in pp, p-Pb and Pb-Pb collisions 

• The production mechanisms of light (anti)nuclei in 
high-energy physics are still not completely understood 

‣ low binding energy (EB ~ 1 MeV) with respect to the 
kinetic freeze-out temperature (Tfo ~ 100 MeV) 

• Two classes of models are available: 

‣ the statistical hadronisation model 

‣ the coalescence model

Need a solid understanding of hypernuclei 
production mechanisms before we can 
use them to probe the in-medium Y–N 
interaction1. Thermal models

• Hadrons and (hyper-)nuclei are treated equally

• Yields are predicted with thermal equilibrium 
assumptions

2. Coalescence model
• (Hyper-)nuclei formation after kinetic freeze-out

• Nucleon coalescence

• Emission source size and nuclear radius
• Wigner function

When are nuclei produced in a heavy-ion 
collision?

✓Sensitive to the freeze-out phase space, which 
can be affected by in-medium Y–N interactions

✗ Do not provide Y–N interaction information
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Hypernuclei Production Mechanisms
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What have we learnt from light nuclei 
production?

Recent nuclei measurements pose 
challenges for thermal model

• d/p is fairly well described by thermal 
model, but 3He/p, 4He/p is overestimated
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See poster by Liubing Chen ( xx/xx)

1. Thermal models
• Hadrons and (hyper-)nuclei are treated equally

• Yields are predicted with thermal equilibrium 
assumptions

When are nuclei produced in a heavy-ion 
collision?

np
np

Λ

✓Sensitive to the freeze-out phase space, which 
can be affected by in-medium Y–N interactions

✗ Do not provide Y–N interaction information

2. Coalescence model
• (Hyper-)nuclei formation after kinetic freeze-out

• Nucleon coalescence

• Emission source size and nuclear radius
• Wigner function
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STAR overview, P. Tribedy, QM 2022, Krakow, Poland 2

Successful Operation of STAR in Years 2020-21

Run 20 and 21 completed successfully: enhanced collision rates due to Low Energy RHIC Electron 
Cooling (LEReC) system, smooth & desired performance of BES-II upgrades (iTPC, eTOF, EPD)

RHIC Beam Energy Scan II completed, p+p 510 run with fully installed forward upgrade is ongoing

https://online.star.bnl.gov/aggregator/livedisplay/
Watch Live Collisions At STAR:

7 energies between 7.7 - 27 GeV (collider mode) 
12 energies between 3.0 - 13.7 GeV (FXT mode)

EPD

eTOF
iTPC

BES-II upgrades

Early completion of BES-II data taking  
allowed O+O & d+Au runs in 2021
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• RHIC BES-II offers great opportunity for hypernuclei 

measurements

MTDMagnet BEMCEEMC EPDTPC iTPCTOF

- Large acceptance
- Excellent PID with uniform

efficiency
- Modest rates 

STAR

Detector 

System

for

BES-II
- iTPC, EPD & eTOF upgrades 

completed 
- All are in data-taking for BES-II 

program
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A. Andronic et al. Phys.Lett.B 697, 203 (2011)  
J. Steinheimer et al. Phys.Lett.B 714, 85 (2012) 
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Hypernuclei Reconstruction
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• Hypernuclei are reconstructed using the following decay channels:
 →  + 𝟥

Λ𝖧 𝟥𝖧𝖾 π−  →  + 𝟦
Λ𝖧 𝟦𝖧𝖾 π−  →  + p + 𝟦

Λ𝖧𝖾 𝟥𝖧𝖾 π−

 →  + p + 𝟧
Λ𝖧𝖾 𝟦𝖧𝖾 π−

• Combinatorial background estimated via rotating fragment tracks
• Efficiency correction using a data-driven GEANT simulation
• To account for the decay kinematics of , , the three-body 

decay phase space is weighted according to the Dalitz plot from data

𝟦
Λ𝖧𝖾 𝟧
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Helps to constrain Λ–N and ΛNN
H. Le et al., PRL 134, 072502 (2025) 
A. Jinno et al., PRC 110, 014001 (2024)
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Hypernuclei pT Spectra and Rapidity
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Au+Au Collisions, |y|<0.5

• Measurements cover different energies
•  in Au+Au collisions at 3-27 GeV, Au+Au collisions at 200 GeV 𝟥

Λ𝖧

• ,  in Au+Au collisions at 3-3.5 GeV 𝟦
Λ𝖧 𝟦

Λ𝖧𝖾

•  in Au+Au collisions at 3 GeV 𝟧
Λ𝖧𝖾
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• Significant hypernuclei production at target 
rapidity, more pronounced for heavier hypernuclei
Spectator matter matters at target rapidity

A. S. Botvina et al., PRC 84, 064904 (2011) Au+Au  = 3.2-27 GeV𝟥
Λ𝖧 𝗌NN
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Particle Yields Compared to Thermal model
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• First potential 
evidence for the 
possible feed down 
from  →  + 𝟧

Σ𝟢𝖧𝖾 𝟧
Λ𝖧𝖾 γ

STAR, PRC 110, 054911 (2024) 
STAR, PRL 128, 202301 (2022) 
STAR, JHEP 2024 (2024) 139

*Feed-down from unstable 
nucleus

J. Johnstone et al., J. Phys. G 8, L105 (1982)

*(1+)→ (0+) + 

*(1+)→ (0+) + 

𝟦
Λ𝖧 𝟦

Λ𝖧 γ
𝟦
Λ𝖧𝖾 𝟦

Λ𝖧𝖾 γ
STAR, PLB 834, 137449 (2022)

• Data overestimate  and  after 
including feed-down from excited states

𝟦
Λ𝖧 𝟦

Λ𝖧𝖾

• Thermal model predicts approx. exponential 
dependence of yields/(2J+1) vs A

• Light nuclei overestimated by thermal with 
feed-down from unstable nuclei
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Excitation Function
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• Across all energy, thermal model 
describes , overestimates , , 
and , slightly underestimates  
across energy

Λ 𝟥
Λ𝖧 𝟦

Λ𝖧
𝟦
Λ𝖧𝖾 𝟧

Λ𝖧𝖾

Interplay between increasing baryon density 
and stronger strangeness canonical 
suppression towards low energies
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•   plateaus at  = 3-4 GeV𝟥
Λ𝖧 𝗌NN

• Similar trend for  and 𝟦
Λ𝖧 𝟦

Λ𝖧𝖾

Thermal: feed-down included, except  for 𝟧Λ𝖧𝖾
STAR, Phys.Rev.Lett. 128(2022)20, 202301 
V. Vovchenko et al., PRC 93, 064906 (2016)
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Mean Transverse Momentum at 3 GeV
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Hydrodynamic-inspired Blast-Wave model: assumes 
particles are emitted thermally from an expanding 
source with a common ⟨βT⟩ and Tkin

STAR, PRC 110, 054911 (2024) 
STAR, PRL 128, 202301 (2022) 
STAR, JHEP 2024 (2024) 139

- Vary the mass to construct the blast-wave prediction 
using p(Λ) freeze-out parameters

E. Schnedermann et al., PRC 48, 2462 (1993) 
ALICE, PLB 794, 50–63 (2019)

• Light (hyper-)nuclei deviate from the full 
hydrodynamic picture

np Λ

• Hypernuclei close to Λ blast wave ansatz

p Λ
⟨βT⟩(c) 0.43 0.33

Tkin (GeV) 0.065 0.076

• Coalescence occurs where constituents overlap, 
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Mean Transverse Momentum v.s. Collision Energy

11

3 4 5 6 7 8 910 20 30
 (GeV)             NNs

0

0.5

1

1.5

2

2.5

 (G
eV

/c
)  

   
   

   
   

〉 Tp〈

10

HΛ
3 
Λ

p

H Blast-waveΛ
3 

〉
T

β〈, kinT Λ
〉

T
β〈, kinTp 

Published
STAR preliminary

STAR PreliminaryAu+Au 0-10% collisions
Mid-rapidity • At  ≥ 7.7 GeV,   tends to 

approach the blast-wave prediction with 
proton freeze-out parameters

𝗌NN
𝟥
Λ𝖧 ⟨𝗉𝖳⟩

STAR, PRC 110, 054911 (2024) 
STAR, PRL 128, 202301 (2022) 
STAR, JHEP 2024 (2024) 139

• Noticeable change between 4.5 and 7.7 
GeV

• May be due to increasing effective 
volume for coalescence with increasing 
energy

D.-N. Liu et al., PLB 855, 138855 (2024)
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Directed Flow at 3 GeV
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See poster by Junyi Han ( xx/xx)
Placeholder 

STAR, PLB 827, 136941 (2022) 
STAR, PRL 130, 212301 (2023)

np Λ

• Light nuclei mid-rapidity v1 slope increase 
linearly with atomic mass number A

• Hypernuclei v1 slope systematically lower 
than light nuclei of similar A, and compatible 
with Λ atomic mass number scaling
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Summary and Outlook
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1. First measurement of A = 5 hypernuclei yield and directed flow in Au+Au 
collisions at  = 3 GeV𝗌NN

Outlook:
• BES-II 3 GeV 2B data: more precise measurement of A < 5 hypernuclei,  intrinsic 

properties (BΛ, dalitz plot, lifetime), search for heavier hypernuclei (A > 5), double-Λ 
hypernuclei

𝟧
Λ𝖧𝖾

2. Thermal model overestimates , , and , and slightly underestimates 𝟥
Λ𝖧 𝟦

Λ𝖧 𝟦
Λ𝖧𝖾 𝟧

Λ𝖧𝖾
3. Mean transverse momentum tends to be lower than hydrodynamic-inspired blast-

wave model at  < 7.7 GeV𝗌NN

All measurements consistently point to the coalescence production mechanism

• Hypernuclei measurements from STAR BES-II at  = 3-27 GeV𝗌NN

➡Further constrain production mechanism, structure of hypernuclei, and YN, YY, YNN 
interactions 

4. Directed flow follow atomic mass number A scaling
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Backup Slides Follow
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Directed Flow at 3 GeV — need to be discussed 
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See poster by Junyi Han ( xx/xx)
Placeholder 

STAR, PLB 827, 136941 (2022) 
STAR, PRL 130, 212301 (2023)

np Λ

• Hypernuclei v1 slope deviate from simple 
coalescence-inspired sum rule, but close to 
Λ atomic mass number scaling

 A. I. Sheikh, PRC 106, 054907 (2022)

Coalescence-inspired sum rule: flow of hypernuclei = 
Nnucleon*nucleon v1 + NΛ * Λ v1

• Could be explained by coalescence model 
like JAM+coalescence, or coalescence 
speculation, not this simple coalescence 

To avoid giving the impression that the 
coalescence model doesn’t work, and since 
we have already removed this blue bubble , 
we should not include this simple 
coalescence sum rule band in the figure?


