

Charge-dependent correlations relative to the 4th-harmonic event plane in Au+Au collisions at 27 and 39 GeV at RHIC/STAR

Antonett Nunez-delPrado (For the STAR Collaboration)

Abstract

In the chiral magnetic effect (CME), an electric current is induced in the presence of a chirality imbalance and the strong magnetic field created in highenergy nuclear collisions. One corresponding observable for the charge separation across the reaction plane ψ_{RP} is the charge-dependent two-particle azimuthal correlator, $\gamma_{112} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}) \rangle$. However, the γ_{112} contains both the CME signal and the flow background, complicating the interpretation of the data. In this poster we investigate the background mechanism with a modified correlator, $\gamma_{224} = \langle \cos(2\phi_{\alpha} + 2\phi_{\beta} - 4\psi_{RP}) \rangle$. The γ_{224} only contains the background, and reflects the role played by the collective flow in the original γ_{112} correlator. We present the STAR data of γ_{224} as a function of centrality measured in Au+Au collisions at 27 and 39 GeV. The results will be compared with those obtained by the ALICE experiment at a much higher collision energy, and will also be compared with model calculations. The physics implications will be discussed.

Introduction

Chiral Magnetic Effect (CME) - Results from the strong magnetic field created in nuclear collisions and a local chirality imbalance; creates an electric current along B field.

♦To search for a possible CME, one can study the Fourier series of the charged particle azimuthal distribution of produced particles:

$$\frac{dN}{d\phi} = 1 + 2 v_1 \langle \cos(\phi - \Psi) \rangle + 2 v_2 \langle \cos(2(\phi - \Psi)) \rangle + \dots + 2a_1 \sin(\phi - \Psi)$$

Directed flow Elliptic flow
where
$$v_n = \langle \cos(n(\phi - \Psi)) \rangle$$
a is charge separation
n are flow harmonics
$$w_n = \frac{1}{2} \left(\cos(n(\phi - \Psi)) \right)$$

Motivation

 δ The three-point correlator, γ_{112} , correlates a pair of particles with respect to the reaction plane ψ_{RP} :

$$\begin{split} \gamma_{112} &= \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}) \rangle \\ &= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_{1,\alpha} a_{a,\beta} \right\rangle + B_{out} \right] \end{split}$$

where α is the sign of electric charge.

 \Diamond

 \Diamond

This correlation with respect to the second-harmonic plane contains CME charge separation signal as well as flowrelated background.

 \diamond For the new correlator γ_{224} all angles have been doubled:

1.1.))

$$\gamma_{224} = \langle \cos(2\phi_{\alpha} + 2\phi_{\beta} - 4\psi_{RP}) \rangle$$

Elliptic flow fluctuations
relative to the quadrangular

1---(2+ + 2+

Correlations measured with respect to the fourth-harmonic plane should not contain any CME contribution.

Summary

The original γ_{112} correlator contains the CME signal and background.

- We studied γ_{224} because it gives an insight to only flow-related background.
- \diamond Next would be to explore $\gamma_{123} = \langle \cos(\phi_{\alpha} 2\phi_{\beta} 3\psi_{RP}) \rangle$ which would allow for a more accurate study of background vs. CME signal.

Acknowledgements

Huge thanks to Prof. Huan Huang and Dr. Gang Wang for all their support and mentorship.