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Abstract7

Directed flow (v1) is a good probe of the early-stage dynamics of collision systems, and the v1 slope at midrapidity8

(dv1/dy|y=0) is sensitive to the system’s equation of state. STAR has published v1(y) measurements for ten particle9

species (π±, p, p̄, Λ, Λ̄, φ, K± and K0
S ) in Au+Au collisions at eight beam energies from

√
sNN = 7.7 GeV to 200 GeV.10

In this study, we employ a simple coalescence idea to decompose v1 of hadrons into v1 of constituent quarks. The dv1/dy11

values of p̄, K− and Λ̄ are used to test the coalescence sum rule for produced quarks. Data involving produced quarks12

support the coalescence picture at
√

sNN = 11.5 GeV to 200 GeV, and a sharp deviation from this picture is observed13

at 7.7 GeV. The dv1/dy of transported quarks is studied via net particles (net p and net Λ). In these proceedings, we14

further extract the v1 slopes of produced and transported quarks, assuming that the coalescence sum rule is valid.15
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1. Introduction17

Rapidity-odd directed flow (vodd
1 (y)) is the first Fourier coefficient of the final-state azimuthal distribution18

relative to the collision reaction plane [1], and describes the collective sideward motion of emitted particles.19

The rapidity-even component (veven
1 (y)) [2] is unrelated to the reaction plane in symmetric collisions, and20

hereafter, v1(y) implicitly refers to the odd component. Hydrodynamic calculations [3, 4] have proposed a21

minimum in net-baryon directed flow versus
√

sNN as a signature of a first-order phase transition between22

hadronic matter and quark-gluon plasma. This minimum is supposedly related to the softening of the sys-23

tem’s equation of state (EOS). STAR has published v1(y) measurements for ten particle species (π±, p, p̄, Λ,24

Λ̄, φ, K± and K0
S ) in Au+Au collisions at eight beam energies from

√
sNN = 7.7 GeV to 200 GeV [5, 6]. Net25

protons do show a minimum in dv1/dy near
√

sNN of 10 to 20 GeV [5]. In more recent model calculations26

of v1(y) with different EOS [7, 8, 9, 10, 11, 12], the assumption of purely hadronic physics is disfavored,27

but there is no consensus on whether STAR measurements [5] favor a crossover or first-order phase transi-28

tion. While further progress in models is needed for a definitive interpretation, the experimental data may29

distinguish different interpretations by advancing to the constituent quark level.30

1A list of members of the STAR Collaboration and acknowledgements can be found at the end of this issue.
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Number-of-constituent-quark (NCQ) scaling of elliptic flow (v2) [13] behaves as if v2 is imposed at the31

level of deconfined constituent quarks, providing an example of coalescence behavior among quarks. The32

ten particle species available in the present analysis allow a detailed investigation of the scaling behavior of33

v1 at constituent quark level versus
√

sNN . We will test a set of assumptions, namely that v1 is imposed at the34

pre-hadronic stage, that specific types of quark have the same directed flow, and that the detected hadrons35

are formed via coalescence [13, 14]. In a scenario where deconfined quarks have already acquired vn, and36

in the limit of small vn, coalescence leads to the vn of the resulting mesons or baryons being the summed vn37

of their constituent quarks [14, 15]. We call this assumption the coalescence sum rule. NCQ scaling in turn38

follows from the coalescence sum rule [14].39

In this study, we attempt to separate “transported” quarks (u and d from the initial-state nuclei) ) and40

“produced” quarks (u, ū, d, d̄, s and s̄ created in pair after the collision). The number of transported quarks41

is conserved, and transported quarks experience the whole system evolution, including the initial sideward42

deflection, the possible softening of equation of state, annihilation, re-scattering and so on. Conversely, the43

total number of produced quarks is not conserved, and produced quarks are presumably created in different44

stages [16], which complicates the interpretation of produced-quark v1. Experimentally, produced quarks45

can be studied with purely “produced” particles, such as p̄, Λ̄ and K−, whereas transported quarks can be46

probed with net particles that represent the excess yield of a particle species over its antiparticle. We define47

v1 net p based on expressing v1(y) for all protons as v1 p = r(y)v1 p̄ + [1 − r(y)]v1 net p, where r(y) is the ratio of48

observed p̄ to p yield at each beam energy. Net-Λ v1 is defined similarly, except p̄ (p) becomes Λ̄ (Λ).49

2. Results50

We first test the coalescence sum rule in a straightforward case where all quarks are known to be pro-51

duced. Figure 1(a) compares the observed dv1/dy for Λ̄(ūd̄ s̄) with the calculation for K−(ūs) + 1
3 p̄(ūūd̄) [6].52

This calculation is based on the coalescence sum rule combined with the assumption that ū and d̄ quarks53

have the same flow, and that s and s̄ have the same flow. Close agreement is observed for
√

sNN from 11.554

to 200 GeV. The inset in Fig. 1(a) presents the same comparison, but with a larger vertical scale. The ob-55

served sharp breakdown of agreement at
√

sNN = 7.7 GeV implies that one or more of the aforementioned56

assumptions no longer hold below 11.5 GeV.
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Fig. 1. (Color online) Directed flow slope (dv1/dy)
versus

√
sNN for intermediate centralities (10 −

40%) [6]. Panel (a) compares the observed Λ slope
with the prediction of the coalescence sum rule for
produced quarks. The inset shows the same compari-
son where the vertical scale is zoomed-out; this allows
the observed flow for the lowest energy (

√
sNN = 7.7

GeV) to be seen. Panel (b) presents two further sum-
rule tests, based on comparisons with net-Λ measure-
ments. The solid and dotted lines are smooth curves
to guide the eye.
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In the limit of low
√

sNN , most u and d quarks are presumably transported, whereas in the limit of high57
√

sNN , most of u and d are produced. In Fig. 1(b), we exploit net Λ(uds) to test two coalescence sum rule58

scenarios which are expected to bracket the observed dv1/dy for a baryon containing transported quarks.59

The first compared data operation (red diamond markers) consists of net proton (uud) minus ū plus s, where60

ū is estimated from 1
3 p̄, and the s quark flow is obtained from K−(ūs) − 1

3 p̄(ūūd̄). Here we assume that a61

produced u quark in net p is replaced with an s quark. This sum-rule calculation agrees closely with the62

net-Λ measurement at
√

sNN = 19.6 GeV and above, remains moderately close at 14.5 and 11.5 GeV, and63

deviates significantly only at 7.7 GeV. With decreasing beam energy, the number of transported quarks per64

net proton increases (as shown in Fig. 4), and there is an increasing departure from the assumption that a65

produced u quark is removed by keeping the term (net p− 1
3 p̄). The second coalescence operation in Fig. 1(b)66

corresponds to 2
3 net proton plus s (blue circle markers). In this case, we assume that the constituent quarks67

of net protons are dominated by transported quarks in the limit of low beam energy, and that one of the68

transported quarks is replaced by s. This approximation only seems to hold at
√

sNN = 7.7 GeV, and breaks69

down as the beam energy increases.70
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Fig. 2. (Color online) Directed flow slope (dv1/dy) of ū(d̄) and s
quarks versus

√
sNN for intermediate centralities (10 − 40%).
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Fig. 3. (Color online) Directed flow slope (dv1/dy) of s and s̄
quarks versus

√
sNN for intermediate centralities (10 − 40%).

With the assumption of the coalescence sum rule, we can further extract dv1/dy of constituent quarks.71

Figures 2 and 3 present directed flow slope (dv1/dy) of produced quarks as function of
√

sNN for inter-72

mediate centralities (10 − 40%). dv1/dy of the produced u(d, ū, d̄) quarks is approximated with 1
3 p̄(ūūd̄),73

whereas the s quark flow is obtained from K−(ūs) − 1
3 p̄, and s̄ from Λ̄(ūd̄ s̄) − 2

3 p̄. At
√

sNN = 200 GeV, the74

produced u(d, ū, d̄) and s quarks have very similar v1 slopes, and they deviate towards lower beam energies.75

The consistency between s and s̄ holds within uncertainties for almost all studied beam energies, except at76
√

sNN = 7.7 GeV, where dv1/dy of s̄ is −0.097 ± 0.023(stat.) ± 0.026(syst.), far off the scale.77

Next, we estimate the number of transported quarks per net proton. Assuming that the chemical potential78

of u(d) quarks is one third of that of baryons, µu(d) = µB/3, we derive from thermal equilibrium that the79

number of transport quarks per net proton is Ntrans. u+d = 3 × (1 − e−2µu(d)/Tch )/(1 − r) [17]. Here Tch is the80

chemical freeze-out temperature, and r ∝ e−6µu(d)/Tch is the aforementioned ratio of observed p̄ to p yield.81

In the limit of low
√

sNN or high µB, Ntrans. u+d is close to three, whereas in the limit of high
√

sNN or low82

µB, Ntrans. u+d approaches unity. These features are confirmed by Fig. 4 that shows the number of transported83

quarks per net proton versus
√

sNN for intermediate centralities (10 − 40%). The values of µB and Tch are84

based on previous STAR measurements [18]. Quoted errors are statistical uncertainties only.85

Finally, the v1 slope of transported quarks is obtained by removing produced quarks from net protons:86

v1 trans. u(d) = [v1 net p− (3−Ntrans. u+d)×v1 ū(d̄)]/Ntrans. u+d. Figure 5 illustrates dv1/dy of transported u(d) quarks87

versus
√

sNN for intermediate centralities (10−40%), which is positive for all the beam energies under study,88

and demonstrates a minimum at
√

sNN ≈ 14.5 GeV. Compared with previous STAR results on net-proton89

v1, these data on the constituent quark level provide a stronger evidence of the softening of equation of state,90

though a definite interpretation still requires further theoretical inputs.91
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Fig. 4. (Color online) Number of transported u and d quarks per
net proton versus

√
sNN for intermediate centralities (10−40%).
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Fig. 5. (Color online) Directed flow slope (dv1/dy) of transported
u(d) quarks versus

√
sNN for intermediate centralities (10−40%).

3. Summary92

STAR has published directed flow results for ten particle species in Au+Au collisions at eight beam93

energies. These data enable us to test the coalescence sum rule on the constituent quark level, for both94

produced and transported quarks. The observed pattern of scaling behavior for produced quarks at and95

above
√

sNN = 11.5 GeV, with a breakdown at 7.7 GeV, warrants further study. Two coalescence sum96

rule scenarios have been explored to bracket the observed dv1/dy of net Λ that contains transported quarks.97

Assuming the validity of the coalescence picture, we have extracted the v1 slopes of produced u(d, ū and d̄),98

s and s̄ quarks, as well as transported u(d) quarks as function of
√

sNN for intermediate centralities. Among99

produced quarks, u and s have similar dv1/dy at 200 GeV, and deviate towards lower beam energies. The v1100

slopes of s and s̄ are consistent with each other, except at 7.7 GeV. dv1/dy of transported quarks is positive101

for all the beam energies under study, and supports the softening of equation of state with a minimum at102
√

sNN ≈ 14.5 GeV. These energy-dependent measurements will be enhanced after STAR acquires greatly103

increased statistics using upgraded detectors in Phase II of the RHIC Beam Energy Scan [19].104
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