Initial study of the Roy/Ajit's correlator

Chrystalla Havadjia (UCLA)

Chiral Magnetic Effect (CME)

Chiral fermions in the QGP cause an electric current $J_{\rm Q}\,$ along the magnetic field generated in the collision

Leading to charge separation across the reaction plane

Chiral magnetic Conducativity This leads to a dipole term in the azimuthal Electric Current $\vec{J}_{o} = \vec{\sigma}_{5}\vec{B}$ distribution of the produced charged hadrons $\frac{dN^{ch}}{d\phi} \propto \left[1 \pm 2a_1^{ch}\sin\phi + \ldots\right]$ $\gamma^{\alpha,\beta} = \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \right\rangle$ $= \langle \cos(\phi_{\alpha} - \Psi_{RP}) \cos(\phi_{\beta} - \Psi_{RP}) \rangle$ In reality, $(B_{IN}-B_{OUT}) \sim v_2 / N$ $-\langle \sin(\phi_{\alpha} - \Psi_{RP}) \sin(\phi_{\beta} - \Psi_{RP}) \rangle$ $\gamma^{\alpha,\beta} = -\langle a_{\alpha}a_{\beta}\rangle + c \frac{v_2}{N}$ $= [\langle v_{1,\alpha}v_{1,\beta}\rangle + B_{\rm IN}] - [\langle a_{\alpha}a_{\beta}\rangle + B_{\rm OUT}]$ Baseline In-plane Signal of Out-of-plane unrelated to background interest background the B field.

Roy/Ajit's Correlator

Charge separation (ΔS) is measured using a multi-particle charge-sensitive in-event correlator relative to the Ψ_2 plane

 $\Psi_2 + \pi/2$ is similarly constructed and is a second multi-particle correlator where CME-driven charge asymmetry vanishes.

The shape and the magnitude of the correlator determines the characterized charge separation Example:

$$R(\Delta S) = C_p(\Delta S) / C_p^{\perp}(\Delta S)$$

CME-driven charge separation creates a "concave" shape non-CME related background produces a "convex"

Collective flow Momentum conservation Local charge conservation

"Concave-shaped" response validates charge separation input in the presence of sizeable background

- Flow
- Resonance decay
- Charge separation ($o_1 > 0$)

4

Sergei's comparison: $\Delta \gamma$ and Roy's width

- Roy's observable is a double ratio where the concave or convex shape depends on the width of the numerator and detonator.
- Keeping positive and negative particle fixed, this is an estimate of the difference in these widths.

$$\begin{aligned} \text{Quantity of interest} & \Delta \sigma_{RA}^2 = \langle (\Delta S)^2 \rangle - \langle (\Delta S_\perp)^2 \rangle - \langle (\Delta S_{\text{shuffled}})^2 \rangle + \langle (\Delta S_\perp, \text{shuffled})^2 \rangle \\ \Delta \sigma_{RA}^2 &= \frac{1}{p} \langle \sin^2 \Delta \phi_i^+ \rangle + \frac{p-1}{p} \langle \sin \Delta \phi_i^+ \sin \Delta \phi_j^+ \rangle \\ &+ \frac{1}{n} \langle \sin^2 \Delta \phi_i^- \rangle + \frac{n-1}{n} \langle \sin \Delta \phi_i^- \sin \Delta \phi_j^- \rangle \\ &- 2 \langle \sin \Delta \phi_i^+ \sin \Delta \phi_j^- \rangle \\ &- \frac{1}{p} \langle \cos^2 \Delta \phi_i^+ \rangle - \frac{p-1}{p} \langle \cos \Delta \phi_i^+ \cos \Delta \phi_j^+ \rangle \\ &- \frac{1}{n} \langle \cos^2 \Delta \phi_i^- \rangle - 2 \frac{n-1}{n} \langle \cos \Delta \phi_i^- \cos \Delta \phi_j^- \rangle \\ &+ 2 \langle \cos \Delta \phi_i^+ \cos \Delta \phi_j^- \rangle \\ &+ 2 \langle \cos \Delta \phi_i^+ \cos \Delta \phi_j^- \rangle \\ &\approx -\frac{1}{n} v_2^- - \frac{1}{p} v_2^+ - \frac{n-1}{n} \gamma_{--} - \frac{p-1}{p} \gamma_{++} + 2\gamma_{+-} \end{aligned}$$
Equivalent!
$$(\frac{1}{n} v_2^- - \frac{1}{p} v_2^+ - \frac{n-1}{n} \gamma_{--} - \frac{p-1}{p} \gamma_{++} + 2\gamma_{+-}) \text{charge average} \\ &\approx 2 (\gamma_{\text{opcome}} - \gamma_{\text{same}}) \end{aligned}$$

Ideal Monte Carlo simulation (no background and w.r.t the true reaction plane):

• Number of particles: 100 h⁺ and 100 h⁻

CP: Ratio dS_sin/dS_sin_suffle

Observed width difference vs EP resolution

The EP resolution is changed by varying the v_2 of particles going into the event plane. The observed signal increases linearly with the event plane resolution.

Correction for the EP resolution

After the correction for the EP resolution, both $\Delta\gamma$ and $\Delta\sigma^2_{RA}$ restore the input value of charge separation.

AMPT from Niseem

AMPT from Niseem

 $\Delta \gamma = 3.2^{*}10^{-5}$ and $\Delta \sigma^{2}_{RA}/2 = 6.1^{*}10^{-5}$.

Although both $\Delta \gamma$ and the width difference indicate a charge separation signal, the convex shape of the double ratio says the opposite.

AMPT from Niseem

Now w.r.t the reconstructed event plane, and correct for EP resolution. $\Delta \gamma = 5.8 \times 10^{-5}$ and $\Delta \sigma^2_{RA}/2 = 6.9 \times 10^{-5}$.

Although both $\Delta \gamma$ and the width difference indicate a charge separation signal, the convex shape of the double ratio says the opposite.

12

How to shuffle charges

Roy's correlator depends on the technical details of the charge-shuffling. Case 1 gives smaller "signal", and then a flatter double ratio, though both convex. Should we stick to case 1, which gives an apple-to-apple ratio of the original-charge over shuffled-charge?

Case 1: only shuffle the charges of particles of interest. $\Delta \sigma^2_{RA}/2 = 6.1*10^{-5}$. Case 2: shuffle all the particles in the event, all rapidity and p_T . $\Delta \sigma^2_{RA}/2 = 1*10^{-4}$.

What remains to be done

- Which charge-shuffling scheme should be taken?
- Difference between Niseem's AMPT events and our AMPT events:
 - For the same centrality, Niseem's Δγ is about half of what we have, and Niseem's Δδ is only a quarter of ours, though v₂ values are similar.
 - Did you turn off hadronic scattering or some other options in AMPT?
- Niseem posts the AMPT events in a rather central centrality range:
 - The fake signal itself is small.
 - Could Niseem post more peripheral AMPT events, like 50-60%?
- In real data, when we have a concave double ratio, how exactly should we extract the *α*₁ signal? This part is still mysterious to us.

Backup slides

- Toy model
 - Flow
 - No Resonance decay
 - Charge separation (a₁>0)

"Concave-shaped" response for input charge separation validated

- Toy model
 - Flow
 - No resonance decay
 - No Charge separation (a₁=0)

