Analysis Update on: Search for the chiral magnetic effect with identified particles in 39 GeV Au+Au

Yiwen Huang (Eva) University of California, Los Angeles Advisor: Huan Zhong Huang 09/28/2016

UCLA

Outline

- PID results (Pion-Proton, Pion-Kaon)
- Flow Background Analysis
- Summary & Outlook

Chiral Magnetic Effect and Charge Separation

- An electric current will be induced in chiral domains along the B field: Chiral Magnetic Effect (CME).
- Charge separation fluctuations for all charged particles have been experimentally observed.
- Identified particle analysis: Is there an indication of CME?
- Shifting method is used to make corrections to the event plane.

Observable: y correlator

Kharzeev, D.E. et al. Prog.Part.Nucl.Phys. 88 (2016) 1-28 arXiv: 1511.04050 [hep-ph]

Cuts & Identification of Pions and Protons

• Event

VertexZ (cm)	(-30,30)

Particles

Eta	(-1,1)	
Dca (cm)	Proton	< 1
	Pion	< 2
Tof	β	> 0
	Ylocal	(-1.8,1.8)

Identified Particles

Mass ² (GeV ² /c ⁴)	Proton	(0.8, 1)
	Pion	(-0.01, 0.1)
pT ⁽ GeV/c)	Proton	(0 4 2)
	TIOLOII	(0:1, 2)
	Pion	(0.15, 1.6)
nSigma of Proton		(-2, 2)
nSigma of Pion		(-2, 2)

• The cuts are from Gang and Liwen.

PID Results for Pion-Proton

$$\gamma = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}) \rangle$$
$$= [\langle v_{1,\alpha}v_{1,\beta} \rangle + B_{in}] - [\langle a_{\alpha}a_{\beta} \rangle + B_{out}]$$

- 39GeV results resemble in scale that of 200 GeV.
- Opposite sign signal above same sign; smaller signals with more central collisions.

Cuts & Identification of Pions and Kaons

• Event

VertexZ (cm)	(-30,30)

Particles

Eta	(-1,1)	
Dca (cm)	Kaon	< 1
	Pion	< 2
Tof	β	> 0
	Ylocal	(-1.8,1.8)

Identified Particles

Mass ² ⁽ GeV ² /c ⁴)	Kaon	(0.2, 0.35)
	Pion	(-0.01, 0.1)
P ⁽ GeV/c)	Kaon	< 1.6
pT (GeV/c)	Kaon	> 0.2
	Pion	(0.15, 1.6)
nSigma of Kaon		(-2, 2)
nSigma of Pion		(-2, 2)

• The cuts are from Gang and Liwen.

PID Results for Pion-Kaon (39 GeV)

• Similar scale as pion-proton signal.

Flow Background

 $\delta \equiv \langle \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \rangle$ $H^{\kappa} = (\kappa v_2 \delta - \gamma) / (1 + \kappa v_2).$

H: background-subtracted correlator, CME contributions

- Correlation signal is contaminated with the **background contributions** due to collective motion of the collision system (flow)
 - decay of the clusters will contribute to the charge separation signal
 - elliptic flow coupled with transverse momentum conservation (TMC) and local charge conservation (LCC)
 - **Baseline**: κ estimated to be (1.2,1.4) for three methods, ~2 for the fourth.

Flow Background in Identified Particles

$$\gamma \equiv \langle \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\rm RP}) \rangle \rangle$$

$$\delta \equiv \langle \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \rangle$$

$$H^{\kappa} = (\kappa v_2 \delta - \gamma) / (1 + \kappa v_2).$$

$$\kappa_{\rm K} \equiv \Delta \gamma / (v_2^{*} \Delta \delta)$$

- H: backgroundsubtracted correlator, CME contributions
- Indication of signal if higher than baseline: κ_{k} that forces $\Delta H = 0$

Summary & Outlook

- It require more information to claim a charge-separation signal in proton-pion or in kaon-pion.
- Outlook:
 - Finish analysis on pion-pion.
 - Try the $q^2 = 0$ handle on event shape
 - q or q² reflects the sphericity property of the sub-event. q² distribution favors the projection of γ to zero q²
 (arxiv.org/abs/1608.03205)
 - Further background study.