# Update on CME & CMW analyses

Youn Jun Cho and Gang Wang (UCLA)

#### **Factorization or not?**

$$\begin{split} \gamma_{112} &= \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi) \rangle \\ &= \langle \cos(\varphi_{\alpha} - \varphi_{\beta} + 2\varphi_{\beta} - 2\Psi) \rangle \\ &= \langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle - \langle \sin(\varphi_{\alpha} - \varphi_{\beta}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \\ &\approx \delta^* v_2 \qquad \text{if factorization works} \end{split}$$

$$\begin{split} \gamma_{132} &= \langle \cos(\varphi_{\alpha} - 3\varphi_{\beta} + 2\Psi) \rangle \\ &= \langle \cos(\varphi_{\alpha} - \varphi_{\beta} + 2\Psi - 2\varphi_{\beta}) \rangle \\ &= \langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \cos(2\varphi_{\beta} - 2\Psi) \rangle + \langle \sin(\varphi_{\alpha} - \varphi_{\beta}) \sin(2\varphi_{\beta} - 2\Psi) \rangle \\ &\approx \delta^* v_2 \qquad \text{if factorization works} \end{split}$$

Does factorization ever work? Not for  $\gamma_{112}$  or  $\gamma_{123}$ , what about  $\gamma_{132}$ ?

### γ<sub>132</sub> in 200 GeV Au+Au



•  $\gamma_{132}$  displays OS > SS: v<sub>2</sub> driven background.

•  $\kappa_{132} \approx 1$  for 20 - 70% events: factorization works here!

#### **Y112 VS Y132** $\mathbf{z}$ 200 GeV Au+Au $\kappa_{112}$ 4 $\kappa_{132}$ $\diamond$ The shaded boxes reflect 2 the cuts of $|\Delta \eta| > 0.15$ and $|\Delta p_{\rm T}| > 0.15 \, {\rm GeV/c}.$ ⇒ ÷ 80 60 50 30 70 40 20 10 U % Most Central

Compared with  $\gamma_{132}$ ,  $\gamma_{112}$  does show some extra correlations.

#### **Event-shape engineering**





# **Centrality dependence**



- The raw signals are different between  $\gamma_{112}$  and  $\gamma_{132.}$
- The ESE signals are more consistent with zero for  $\gamma_{132}$  than  $\gamma_{112}$ .

# Update CMW analyses



Previously the EP resolution was mis-calculated for pAu and dAu: wrongly used  $\cos(\Psi_{east} - \Psi_{west})$  instead of  $\cos(2\Psi_{east} - 2\Psi_{west})$ .



Results with EP and q-cumulant are consistent with each other. Note that the data sets are from different years.

### **Backup slides**

### **Event-shape engineering: artificial effect**



Fufang Wen, Jacob Bryon, Liwen Wen, Gang Wang, arXiv:1608.03205v3

 $\Delta \gamma|_{q=0}$  is exaggerating the ensemble-average signal by a factor of  $2v_2$ , a roughly 10% effect.