

DNP2016 Flow-background subtraction in charge-separation measurements in heavy-ion collisions Fufang Wen* (UCLA)

Recent azimuthal-angle correlation measurements in high-energy heavy-ion collisions have observed charge-separation signals perpendicular to the reaction plane, and the observations have been related to the chiral magnetic effect (CME) [1]. However, the correlation signal is contaminated with the background contributions due to the collective motion (flow) of the collision system, and it remains elusive to effectively remove the background from the correlation. In this poster, we present a method study with a simple Monte Carlo simulation and the AMPT model [2]. We develop a scheme [3] to reveal the true CME signal via the event-shape engineering with the magnitude of the flow vector, Q: the flow-background is removed at $Q^2 = 0$. Artificial signal/background effects will also be discussed.

Introduction

The thermodynamic states of the hot, dense, and de-confined nuclear medium created in high-energy heavy-ion collisions can be specified by the axial chemical potential μ_5 , as well as the temperature T and the vector chemical potential μ . The quantity μ_5 characterizes the imbalance of right-handed and left-handed fermions in a system, and a chiral system bears a nonzero μ_5 . In a noncentral collision, a strong magnetic field (B ~ 10¹⁵ T) can be produced (mostly by energetic spectator protons), and will induce an electric current along B in chiral domains, $J_B \propto \mu_5 B$, which is called the chiral magnetic effect (CME).

 $\frac{dN}{d\phi} \propto 1 + 2v_{1,\alpha} \cos(\Delta\phi) + 2v_{2,\alpha} \cos(2\Delta\phi) + 2a_{1,\alpha} \sin(\Delta\phi) + \dots$ where $\Delta \phi = \phi - \Psi_{RP}$, α (+ or -) denotes the charge sign of particle v_1 : directed flow v_2 : elliptic flow a₁: quantifies the charge separation due to CME

 $\gamma = \left\langle \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \right\rangle_{P} \right\rangle_{F}$ $= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_{1,\alpha} a_{1,\beta} \right\rangle + B_{out} \right]$

(B_{in}-B_{out}) :flow-related background $v_2^{obs} = \langle \langle \cos(2\phi 2\Psi_{EP}) \rangle_P \rangle_F$ $v_2 = \left\langle \left\langle \cos(2\phi - 2\Psi_{RP}) \right\rangle_P \right\rangle_F$ > Each event is evenly divided into two sub-events, A and B. \succ Resolution $R^{B} \equiv \langle \cos(2\Psi_{EP}^{B} - 2\Psi_{RP}) \rangle_{E}$, ensemble average $v_{2}^{A} = v_{2}^{obs} / R^{B}$

Monte Carlo simulation

 \succ There are only input of the charge separation and elliptic flow : $a_{1,+}=2\%$, $a_{1,-}=-2\%$ and $v_2=5\%$.

Sub-event A provides particles, and sub-event B provides event plane.

AMPT simulation(Au+Au collisions at 200 GeV)

It contains only background contribution, and each event has been divided into 3 sub-events. A: $|\eta| < 1.5$ contains particles of interest. B_1 :1.5 < η < 4, B_2 : -4 < η < -1.5 serve as reconstructed sub-event planes.

Disappearance of background

October 13-16, 2016

Vancouver, BC Canada

Sheraton Vancouver Wall Centre

Ensemble average method

When the q reconstruction is not applicable or reliable, we resort to the ensemble average of several observables. $\gamma \equiv \ll \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\text{RP}}) \gg = \kappa_{\text{B}} v_2 B - H$

FIG.3:The sub-event plane resolution (upper), and the true elliptic flow v_2^A and the corrected v_2^{obs} as functions of q^2 (lower), from AMPT simulation.

- \triangleright Discrepancy between v_2^A and corrected v_2^{obs} comes from non-flow and flow fluctuation.
- \succ Both v₂ drop to 0 at vanishing q².

FIG.4:(Color online) $N_{part} \times \gamma(upper)$ and $N_{part} \Delta \gamma(lower)$ as functions of q², from AMPT simulation. The solid (dashed) line in the lower panel is a linear fit of the full (open) data points.

- $\succ \gamma$ is less sensitive to non-flow and flow fluctuation.
- \succ Intercepts are consistent with zero (-4.9) \pm 6.1) ×10⁻⁴ for N_{part} $\Delta\gamma^{A}$ and (3.9 \pm 9.9) $\times 10^{-4}$ for N_{part} $\Delta \gamma^{observe}$, so disappearance of background at zero q^2 is demonstrated.

Restore ensemble average of signal

$\delta \equiv \ll \cos (\phi_{\alpha} - \phi_{\beta}) \gg = B + H$

H: CME signal contribution.

B: Flow background contributions, include the decays of the clusters, transverse momentum conservation (TMC) and local charge conservation (LCC). Baseline: $\kappa_{\rm B} = \Delta \gamma / (v_2 \Delta \delta)$

FIG.7: Estimation of κ_B with three approaches for 200 GeV Au+Au collision.

Summary

- \rightarrow q² is a valid basis to select spherical sub-event.
- > First projection is applied to remove the flow background, and second projection is applied to remove artificial background.
- > Real CME signal can be obtained from $\Delta \gamma = \Delta \gamma (q^2 = 0)/(1 + 2v_2)$.

GeV Au+Au > For 200 collision, $\kappa_{\rm B}$ is estimated to be [1.2, 1.4] from AMPT simulation.

- CME signal can be obtained from $\kappa_{\rm B}$: $\Delta \mathsf{H}^{\kappa} = (\kappa_{\mathsf{B}} v_2 \, \Delta \delta - \Delta \gamma) / (1 + \kappa_{\mathsf{B}} v_2)$
- > If $\kappa_{\rm k} = (\Delta \gamma)/(v_2 \Delta \delta)$ obtained from real data is significantly above 2, it evidences a real charge separation due to CME.

FIG. 5: (Color online) γ obtained with the true reaction plane as a function of q², from the Monte Carlo simulation.

FIG. 6: A schematic diagram of how to reveal the ensemble- averaged CME signal via the ESE.

 $\succ \gamma_{\text{ebye}} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\text{RP}}) \rangle_{\text{P}} \approx 2\delta_{\text{ebye}} v_{2,\text{ebye}} - a_{1,\alpha} a_{1,\beta} - 2\delta v_2$

 \succ The apparent value at zero q² exaggerates the charge separation: $\Delta \gamma = \Delta \gamma (q^2 = 0) / (1 + 2v_2).$

Reference

[1] D. E. Kharzeev, L. D. McLerran and H. J. War-ringa, Nucl. Phys. A 803, 227 (2008). [2] Z.W. Lin and C.M. Ko, Phys. Rev. C 65, 034904 (2002). [3] F. Wen, L. Wen, and G. Wang, (2016), 1608.03205

Acknowledgement

Thanks to Prof. Huan Z. Huang for mentorship and to Dr. Gang Wang and the STAR collaboration for guidance and insight. Thanks to Brian Zhu, Liwen Wen for patient help on solving my coding and other problems.

*email: fwen0113@g.ucla.edu

U.S. DEPARTMENT OF ENERGY