INTRODUCTION AND THEORY	"QUALITY ASSURANCE"	PRELIMINARY RESULTS	CONCLUSION	References
0000	0000000	000000	0	0

Charge-asymmetry dependence of kaon elliptic flow in 27 GeV Au+Au collisions from STAR.

Keenan Cabrera UCLA

A BRIEF REVIEW OF ELLIPTIC FLOW (v_2) in QGP

- Because the quark-gluon plasma created in non-central collisions isn't spherically symmetric, the plasma does not expand uniformly. v₂ is a measure of this anisotropy of expansion.
- Characterized by the second order Fourier coefficient in the expansion of the azimuthal distribution of particles with respect to the event plane.

•
$$E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n \left(\phi - \Psi_r\right)\right] \right)$$

•
$$v_2 = \langle cos [2 (\phi - \Psi_{RP})] \rangle$$

INTRODUCTION AND THEORY $0 \bullet 0 \circ$

"QUALITY ASSURANCE" 00000000

THE CHIRAL MAGNETIC WAVE (CMW)

The CMW is "a gapless collective excitation of QGP in the presence of [an] external magnetic field that stems from the interplay of Chiral Magnetic (CME) and Chiral Separation Effects (CSE)" [2].

^[2] Burnier et al. (2011), "Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions".

THE CHIRAL MAGNETIC WAVE (CONT.)

- ► The CMW induces an electric quadrapole moment in the QGP that favors the elliptic flow of negative hadrons (v₂⁻ > v₂⁺).
- ► In the presence of a CMW effect, the difference in elliptic flow between negative and positive hadrons is predicted to exhibit a linear dependence with positive slope on charge asymmetry $\left(A_{ch} = \frac{N_{+} N_{-}}{N_{+} + N_{-}}\right)$.

INTRODUCTION AND THEORY $000 \bullet$

EXPERIMENTAL SUPPORT FOR CMW EFFECTS IN HEAVY-ION COLLISIONS

► STAR has detected a positive signal for the CMW effect by analysis of pions in Au + Au collisions at $\sqrt{S_{NN}}$ [1]. This can be seen below.

A figure from the paper published by STAR referenced above. As can be seen, the dependence of v_2 difference on A_{ch} is positive and linear – a clear indication of the CMW effect.

The Kaon is a good candidate to confirm this finding, as for charge-asymmetry-integrated v₂, v₂ (π⁻) > v₂ (π⁺) whereas v₂ (K⁺) > v₂ (K⁻).

^[1] Adamczyk et al. (2015), "Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions".

INTRODUCTION AND THEORY	"QUALITY ASSURANCE"	PRELIMINARY RESULTS	Conclusion	References
0000	0000000	000000	0	0

KAON CUTS

- ▶ $0.2 \frac{GeV}{c} < p_T < 1.0 \frac{GeV}{c}$
- ► $-2 < n\sigma_K < 2$
- $\blacktriangleright \ -1 < \eta < 1$
- ndEdxhits ≥ 10
- TOF flag > 0
- -1.8 < TOF yLocal < 1.8

VERTEX DISTRIBUTION (Z-COORDINATE)

REFERENCE MULTIPLICITY DISTRIBUTION

References 0

CENTRALITY DISTRIBUTION

Ψ_{EP} Distribution (η GAP between -0.3 and 0.3)

SUB-EVENT PLANE RESOLUTION VS. CENTRALITY

^{11/21}

TOF CUTS

■ うへで 12/21

"QUALITY ASSURANCE" 00000000

PRELIMINARY RESULTS

Conclusion References

p_T Integrated v_2 for 20% - 30% Central Collisions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

INTRODUCTION AND THEORY "QUALITY ASSURANCE" PRELIMINARY RESULTS 0000 0000000 000000 CONCLUSION REFERENCES 0 0

p_T Integrated v_2 for 30% - 40% Central Collisions

"QUALITY ASSURANCE" 00000000

PRELIMINARY RESULTS

NCLUSION REFERENCES O

Δv_2 vs Charge Asymmetry for 20% - 30% Central Collisions

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ Q (?) 16 / 21

"QUALITY ASSURANCE" 00000000

PRELIMINARY RESULTS

NCLUSION REFERENCES

Δv_2 vs Charge Asymmetry for 30% - 40% Central Collisions

^{18/21}

19/21

SUMMARY AND FUTURE PLANS

- ► Preliminary findings show support for a positive v₂ vs A_{ch} slope (consistent with the CMW picture), though the error bars are very large.
- More data is needed to extract a statistically significant result.
- ► Future Plans:
 - Tighten DCA cut from 1 cm to 0.5 cm.
 - Include systematic errors:
 - ► Vary tracking efficiency and determine effect on corrected *A*_{ch}.

INTRODUCTION AND THEORY 0000	"QUALITY ASSURANCE" 00000000	PRELIMINARY RESULTS	Conclusion 0	References

REFERENCES

- [1] L. Adamczyk et al. "Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions". In: *Phys. Rev. Lett.* 114 (25 June 2015), p. 252302. DOI: 10.1103/PhysRevLett.114.252302. URL: http://link.aps.org/doi/10.1103/ PhysRevLett.114.252302.
- Yannis Burnier et al. "Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions". In: *Phys. Rev. Lett.* 107 (2011), p. 052303. DOI: 10.1103/PhysRevLett.107.052303. arXiv: 1103.1307 [hep-ph].