$v_{3}{ }^{2} / d N / d \eta$ vs beam energy

> I don't remember how I got the data points. For demonstration purpose, I ignore the errors, and only show 30-40\%.
> My denominator now is the same as what Liao/Paul uses: $d N / d \eta{ }^{*}\left(2 / N_{\text {part }}\right)$.
> Left and right panels look pretty much the same.

Data manipulation: v_{3} instead of $v_{3}{ }^{2}$

$>$ Took square root of $v_{3}{ }^{2}$
Both v_{3} and $d N / d \eta$ are monotonic.
$>$ Their ratio is also monotonic?
$>$ We really need to "square" v_{3} to have the dip.
$>$ Is there any theoretical support for this "square"?

